Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manfred Auer is active.

Publication


Featured researches published by Manfred Auer.


Bioresource Technology | 2010

Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification

Chenlin Li; Bernhard Knierim; Chithra Manisseri; Rohit Arora; Henrik Vibe Scheller; Manfred Auer; Kenneth P. Vogel; Blake A. Simmons; Seema Singh

The efficiency of two biomass pretreatment technologies, dilute acid hydrolysis and dissolution in an ionic liquid, are compared in terms of delignification, saccharification efficiency and saccharide yields with switchgrass serving as a model bioenergy crop. When subject to ionic liquid pretreatment (dissolution and precipitation of cellulose by anti-solvent) switchgrass exhibited reduced cellulose crystallinity, increased surface area, and decreased lignin content compared to dilute acid pretreatment. Pretreated material was characterized by powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and chemistry methods. Ionic liquid pretreatment enabled a significant enhancement in the rate of enzyme hydrolysis of the cellulose component of switchgrass, with a rate increase of 16.7-fold, and a glucan yield of 96.0% obtained in 24h. These results indicate that ionic liquid pretreatment may offer unique advantages when compared to the dilute acid pretreatment process for switchgrass. However, the cost of the ionic liquid process must also be taken into consideration.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis

Staffan Persson; Alexander R. Paredez; Andrew J. Carroll; Hildur Palsdottir; Monika S. Doblin; Patricia Poindexter; Natalie Khitrov; Manfred Auer; Chris Somerville

In higher plants, cellulose is synthesized at the plasma membrane by the cellulose synthase (CESA) complex. The catalytic core of the complex is believed to be composed of three types of CESA subunits. Indirect evidence suggests that the complex associated with primary wall cellulose deposition consists of CESA1, -3, and -6 in Arabidopsis thaliana. However, phenotypes associated with mutations in two of these genes, CESA1 and -6, suggest unequal contribution by the different CESAs to overall enzymatic activity of the complex. We present evidence that the primary complex requires three unique types of components, CESA1-, CESA3-, and CESA6-related, for activity. Removal of any of these components results in gametophytic lethality due to pollen defects, demonstrating that primary-wall cellulose synthesis is necessary for pollen development. We also show that the CESA6-related CESAs are partially functionally redundant.


Nature | 1999

Structure of fumarate reductase from Wolinella succinogenes at 2.2 A resolution.

C. R. D. Lancaster; A. Kröger; Manfred Auer; Hartmut Michel

Fumarate reductase couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, in a reaction opposite to that catalysed by the related complex II of the respiratory chain (succinate dehydrogenase). Here we describe the crystal structure at 2.2 Å resolution of the three protein subunits containing fumarate reductase from the anaerobic bacterium Wolinella succinogenes. Subunit A contains the site of fumarate reduction and a covalently bound flavin adenine dinucleotide prosthetic group. Subunit B contains three iron–sulphur centres. The menaquinol-oxidizing subunit C consists of five membrane-spanning, primarily helical segments and binds two haem b molecules. On the basis of the structure, we propose a pathway of electron transfer from the dihaem cytochrome b to the site of fumarate reduction and a mechanism of fumarate reduction. The relative orientations of the soluble and membrane-embedded subunits of succinate:quinone oxidoreductases appear to be unique.


Journal of Experimental Botany | 2009

Plant cell walls throughout evolution: towards a molecular understanding of their design principles

Purbasha Sarkar; Elena Bosneaga; Manfred Auer

Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche, which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.


Nature | 1998

Three-dimensional map of the plasma membrane H+-ATPase in the open conformation.

Manfred Auer; Gene A. Scarborough; Werner Kühlbrandt

The H+-ATPase from the plasma membrane of Neurospora crassa is an integral membrane protein of relative molecular mass 100K, which belongs to the P-type ATPase family that includes the plasma membrane Na+/K+-ATPase and the sarcoplasmic reticulum Ca2+-ATPase. The H+-ATPase pumps protons across the cells plasma membrane using ATP as an energy source, generating a membrane potential in excess of 200 mV (refs 1–3). Despite the importance of P-type ATPases in controlling membrane potential and intracellular ion concentrations, little is known about the molecular mechanism they use for ion transport. This is largely due to the difficulty in growing well ordered crystals and the resulting lack of detail in the three-dimensional structure of these large membrane proteins. We have now obtained a three-dimensional map of the H+-ATPase by electron crystallography of two-dimensional crystals grown directly on electron microscope grids. At an in-plane resolution of 8 Å, this map reveals ten membrane-spanning α-helices in the membrane domain, and four major cytoplasmic domains in the open conformation of the enzyme without bound ligands.


Environmental Microbiology | 2012

Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill

Jacob Bælum; Sharon E. Borglin; Romy Chakraborty; Julian L. Fortney; Regina Lamendella; Olivia U. Mason; Manfred Auer; Marcin Zemla; Markus Bill; Mark E. Conrad; Stephanie Malfatti; Susannah G. Tringe; Hoi-Ying N. Holman; Terry C. Hazen; Janet K. Jansson

The Deepwater Horizon oil spill resulted in a massive influx of hydrocarbons into the Gulf of Mexico (the Gulf). To better understand the fate of the oil, we enriched and isolated indigenous hydrocarbon-degrading bacteria from deep, uncontaminated waters from the Gulf with oil (Macondo MC252) and dispersant used during the spill (COREXIT 9500). During 20 days of incubation at 5°C, CO(2) evolution, hydrocarbon concentrations and the microbial community composition were determined. Approximately 60% to 25% of the dissolved oil with or without COREXIT, respectively, was degraded, in addition to some hydrocarbons in the COREXIT. FeCl(2) addition initially increased respiration rates, but not the total amount of hydrocarbons degraded. 16S rRNA gene sequencing revealed a succession in the microbial community over time, with an increase in abundance of Colwellia and Oceanospirillales during the incubations. Flocs formed during incubations with oil and/or COREXIT in the absence of FeCl(2) . Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy revealed that the flocs were comprised of oil, carbohydrates and biomass. Colwellia were the dominant bacteria in the flocs. Colwellia sp. strain RC25 was isolated from one of the enrichments and confirmed to rapidly degrade high amounts (approximately 75%) of the MC252 oil at 5°C. Together these data highlight several features that provide Colwellia with the capacity to degrade oil in cold, deep marine habitats, including aggregation together with oil droplets into flocs and hydrocarbon degradation ability.


Plant Biotechnology Journal | 2013

Engineering secondary cell wall deposition in plants

Fan Yang; Prajakta Mitra; Ling Zhang; Lina Prak; Yves Verhertbruggen; Jin-Sun Kim; Lan Sun; Kejian Zheng; Kexuan Tang; Manfred Auer; Henrik Vibe Scheller; Dominique Loqué

Lignocellulosic biomass was used for thousands of years as animal feed and is now considered a great sugar source for biofuels production. It is composed mostly of secondary cell walls built with polysaccharide polymers that are embedded in lignin to reinforce the cell wall structure and maintain its integrity. Lignin is the primary material responsible for biomass recalcitrance to enzymatic hydrolysis. During plant development, deep reductions of lignin cause growth defects and often correlate with the loss of vessel integrity that adversely affects water and nutrient transport in plants. The work presented here describes a new approach to decrease lignin content while preventing vessel collapse and introduces a new strategy to boost transcription factor expression in native tissues. We used synthetic biology tools in Arabidopsis to rewire the secondary cell network by changing promoter-coding sequence associations. The result was a reduction in lignin and an increase in polysaccharide depositions in fibre cells. The promoter of a key lignin gene, C4H, was replaced by the vessel-specific promoter of transcription factor VND6. This rewired lignin biosynthesis specifically for vessel formation while disconnecting C4H expression from the fibre regulatory network. Secondly, the promoter of the IRX8 gene, secondary cell wall glycosyltransferase, was used to express a new copy of the fibre transcription factor NST1, and as the IRX8 promoter is induced by NST1, this also created an artificial positive feedback loop (APFL). The combination of strategies—lignin rewiring with APFL insertion—enhances polysaccharide deposition in stems without over-lignifying them, resulting in higher sugar yields after enzymatic hydrolysis.


ChemBioChem | 2004

mRNA openers and closers: modulating AU-rich element-controlled mRNA stability by a molecular switch in mRNA secondary structure.

Nicole-Claudia Meisner; Jörg Hackermüller; Volker Uhl; András Aszódi; Markus Jaritz; Manfred Auer

Approximately 3 000 genes are regulated in a time‐, tissue‐, and stimulus‐dependent manner by degradation or stabilization of their mRNAs. The process is mediated by interaction of AU‐rich elements (AREs) in the mRNAs 3′‐untranslated regions with trans‐acting factors. AU‐rich element‐controlled genes of fundamentally different functional relevance depend for their activation on one positive regulator, HuR. Here we present a methodology to exploit this central regulatory process for specific manipulation of AU‐rich element‐controlled gene expression at the mRNA level. With a combination of single‐molecule spectroscopy, computational biology, and molecular and cellular biochemistry, we show that mRNA recognition by HuR is dependent on the presentation of the sequence motif NNUUNNUUU in single‐stranded conformation. The presentation of the HuR binding site in the mRNA secondary structure appears to act analogously to a regulatory on/off switch that specifically controls HuR access to mRNAs in cis. Based on this finding we present a methodology for manipulating ARE mRNA levels by actuating this conformational switch specifically in a target mRNA. Computationally designed oligonucleotides (openers) enhance the NNUUNNUUU accessibility by rearranging the mRNA conformation. Thereby they increase in vitro and endogenous HuR–mRNA complex formation which leads to specific mRNA stabilization (as demonstrated for TNFα and IL‐2, respectively). Induced HuR binding both inside and outside the AU‐rich element promotes functional IL‐2 mRNA stabilization. This opener‐induced mRNA stabilization mimics the endogenous IL‐2 response to CD28 stimulation in human primary T‐cells. We therefore propose that controlled modulation of the AU‐rich element conformation by mRNA openers or closers allows message stabilization or destabilization in cis to be specifically triggered. The described methodology might provide a means for studying distinct pathways in a complex cellular network at the node of mRNA stability control. It allows ARE gene expression to be potentially silenced or boosted. This will be of particular value for drug‐target validation, allowing the diseased phenotype to ameliorate or deteriorate. Finally, the mRNA openers provide a rational starting point for target‐specific mRNA stability assays to screen for low‐molecular‐weight compounds acting as inhibitors or activators of an mRNA structure rearrangement.


Journal of Biological Chemistry | 1997

Immunological and Biological Properties of Bet v 4, a Novel Birch Pollen Allergen with Two EF-hand Calcium-binding Domains

Edwin Engel; Klaus Richter; Gerhard Obermeyer; Peter Briza; Andreas J. Kungl; Birgit Simon; Manfred Auer; Christof Ebner; Hans-Jörg Rheinberger; Michael Breitenbach; Fátima Ferreira

We have isolated a cDNA clone coding for a birch pollen allergen, Bet v 4. The deduced amino acid sequence of Bet v 4 contained two typical EF-hand calcium-binding domains. Sequence similarities of Bet v 4 to calmodulin are primarily confined to the calcium-binding domains. However, significant sequence similarities extending outside the Ca2+-binding sites were found with a recently described group of pollen-specific allergens of Brassica and Bermuda grass. Both EF-hand domains of Bet v 4 are able to bind Ca2+, as demonstrated by45Ca2+ blot overlay of wild type and calcium-binding deficient mutants of Bet v 4. Among pollen-allergic patients, protein-bound Ca2+ was not an absolute requirement for IgE recognition of Bet v 4. However, disruption of the carboxyl-terminal Ca2+-binding domain indicated that most IgE antibodies from allergic patients are directed against this site. IgE inhibition experiments suggested that Bet v 4 represents a highly cross-reactive pollen allergen. Pre-absorption of allergic sera with Bet v 4 drastically reduced IgE binding to proteins of similar molecular weight in pollen extracts from distantly related plant species (e.g. timothy grass, mugwort, lily) but not in extracts from plant-derived foodstuff. To test for a possible biological role in pollen germination and tube growth, we introduced recombinant Bet v 4 protein into growing lily pollen tubes by iontophoresis. As a result, cytoplasmic streaming stopped in the vicinity of the electrode tip, and a slight depolarization of the membrane voltage was measured. These effects were not observed with Ca2+-binding deficient mutants of Bet v 4. Thus, Bet v 4 and homologous proteins represent a new class of pollen-specific Ca2+-binding allergens that may have a physiological role as inhibitors of cytoplasmic streaming in outgrowing pollen tubes.


Biofuels | 2010

Understanding the impact of ionic liquid pretreatment on eucalyptus

Özgül Çetinkol; Dean C. Dibble; Gang Cheng; Michael S. Kent; Bernhard Knierim; Manfred Auer; David E. Wemmer; Jeffrey G. Pelton; Yuri B. Melnichenko; John Ralph; Blake A. Simmons; Bradley M. Holmes

Background: The development of cost-competitive biofuels necessitates the realization of advanced biomass pretreatment technologies. Ionic liquids provide a basis for one of the most promising pretreatment technologies and are known to allow effective processing of cellulose and some biomass species. Results & discussion: Here, we demonstrate that the ionic liquid 1-ethyl-3-methyl imidazolium acetate, [C2mim][OAc], induces structural changes at the molecular level in the cell wall of Eucalyptus globulus. Deacetylation of xylan, acetylation of the lignin units, selective removal of guaiacyl units (increasing the syringyl:guaiacyl ratio) and decreased β-ether content were the most prominent changes observed. Scanning electron microscopy images of the plant cell wall sections reveal extensive swelling during [C2mim][OAc] pretreatment. X-ray diffraction measurements indicate a change in cellulose crystal structure from cellulose I to cellulose II after [C2mim][OAc] pretreatment. Enzymatic saccharification of the pretreated material produced increased sugar yields and improved hydrolysis kinetics after [C2mim][OAc] pretreatment. Conclusion: These results provide new insight into the mechanism of ionic liquid pretreatment and reaffirm that this approach may be promising for the production of cellulosic biofuels from woody biomass.

Collaboration


Dive into the Manfred Auer's collaboration.

Top Co-Authors

Avatar

Seema Singh

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Blake A. Simmons

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Marcin Zemla

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bernhard Knierim

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Steven Shave

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Danielle M. Jorgens

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Patanjali Varanasi

Sandia National Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge