Manfred Ayasse
University of Ulm
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manfred Ayasse.
Nature | 1999
Florian P. Schiestl; Manfred Ayasse; Hannes F. Paulus; Christer Löfstedt; Bill S. Hansson; Fernando Ibarra; Wittko Francke
The flowers of Ophrys orchids mimic receptive females of usually only one pollinator species. Males of this species are attracted primarily by the odour of a flower and transfer the pollinia during so-called ‘pseudocopulations’ with the flowers. We have found that flowers of O. sphegodes produce the same compounds and in similar relative proportions as are found in the sex pheromone of its pollinator species, the solitary bee Andrena nigroaenea. Common straight-chain saturated and unsaturated hydrocarbons are the key components in this chemical mimicry, which seems to be an economical means of pollinator attraction.
Proceedings of the Royal Society of London B: Biological Sciences | 2003
Manfred Ayasse; Florian P. Schiestl; Hannes F. Paulus; Fernando Ibarra; Wittko Francke
Ophrys flowers mimic virgin females of their pollinators, and thereby attract males for pollination. Stimulated by scent, the males attempt to copulate with flower labella and thereby ensure pollination. Here, we show for the first time, to our knowledge, that pollinator attraction in sexually deceptive orchids may be based on a few specific chemical compounds. Ophrys speculum flowers produce many volatiles, including trace amounts of (ω–1)–hydroxy and (ω–1)–oxo acids, especially 9–hydroxydecanoic acid. These compounds, which are novel in plants, prove to be the major components of the female sex pheromone in the scoliid wasp Campsoscolia ciliata, and stimulate male copulatory behaviour in this pollinator species. The specificity of the signal depends primarily on the structure and enantiomeric composition of the oxygenated acids, which is the same in wasps and in the orchids. The overall composition of the blend differs significantly between the orchid and its pollinator and is of secondary importance. 9–Hydroxydecanoic acid is a rarely occurring compound that until now has been identified only in honeybees. Contrary to the standard hypothesis that Ophrys flowers produce only ‘second–class attractivity compounds’ and are neglected once the pollinator females are present, we show that flowers are more attractive to the males than are their own females.
The Journal of Experimental Biology | 2004
Patrizia d'Ettorre; Jürgen Heinze; Claudia Schulz; Wittko Francke; Manfred Ayasse
SUMMARY Primitive ant societies, with their relatively simple social structure, provide an opportunity to explore the evolution of chemical communication, in particular of mechanisms underlying within-colony discrimination. In the same colony, slight differences in individual odours can be the basis for discrimination between different castes, classes of age and social status. There is some evidence from correlative studies that such inter-individual variation is associated with differences in reproductive status, but direct proof that certain chemical compounds are detected and recognized by ants is still lacking. In the ponerine ant Pachycondyla inversa, fertile queens and, in orphaned colonies, dominant egg-laying workers are characterized by the predominance of a branched hydrocarbon, 3,11-dimethylheptacosane (3,11-diMeC27) on the cuticle. Using electroanntennography and gas chromatography with electroantennographic detection, we show that the antennae of P. inversa workers react to this key compound. 3,11-diMeC27 is correlated with ovarian activity and, because it is detected, is likely to assume the role of a fertility signal reflecting the quality of the sender.
Oecologia | 2001
Florian P. Schiestl; Manfred Ayasse
The flowers of the sexually deceptive orchid Ophrys sphegodes are pollinated by pseudocopulating males of the solitary bee Andrena nigroaenea. We investigated the changes in odor emission and reduced attractiveness that occur after pollination in these plants. We analyzed floral odor of unpollinated and pollinated flowers by gas chromatography and compared relative and absolute amounts of electrophysiologically active compounds. Headspace odor samples of O. sphegodes flowers showed a significant increase in absolute and relative amounts of all-trans-farnesyl hexanoate after pollination. Flower extracts also indicated an increase of farnesyl hexanoate after pollination. The total amount of the other physiologically active odor compounds decreased slightly. Farnesyl hexanoate is a major constituent of the Dufours gland secretion in females of the pollinator bees, A. nigroaenea, where it functions in the lining of the brood cells. Furthermore, this compound lowers the number of copulation attempts in males. In dual-choice tests, we showed that flowers artificially scented with an amount of farnesyl hexanoate equal to the increased amount after pollination were significantly less attractive than flowers treated with solvent only. We propose that the increased production of farnesyl hexanoate in pollinated flowers is a signal to guide pollinators to unpollinated flowers of the inflorescence, which represents a new mechanism in this pollination system.
Current Biology | 2008
Jennifer Brodmann; Robert Twele; Wittko Francke; Gerald Hölzler; Qing-He Zhang; Manfred Ayasse
An outstanding feature of orchids is the diversity of their pollination systems [1]. Most remarkable are those species that employ chemical deceit for the attraction of pollinators [2]. The orchid Epipactis helleborine is a typical wasp flower, exhibiting physiological and morphological adaptations for the attraction of pollinating social wasps [3]. As noted by Darwin [1], this species is almost entirely overlooked by other potential pollinators, despite a large nectar reward. Therefore, the mechanism for the attraction of pollinating social wasps was something of a mystery. By using a combination of behavioral experiments, electrophysiological investigations, and chemical analyses, we demonstrate for the first time that the flowers of E. helleborine and E. purpurata emit green-leaf volatiles (GLVs), which are attractive to foragers of the social wasps Vespula germanica and V. vulgaris. GLVs, emitted by damaged plant tissues, are known to guide parasitic wasps to their hosts [4]. Several E. helleborine GLVs that induced response in the antennae of wasps were also emitted by cabbage leaves infested with caterpillars (Pieris brassicae), which are common prey items for wasps [5]. This is the first example in which GLVs have been implicated in chemical mimicry for the attraction of pollinating insects.
PLOS ONE | 2012
Patrick Lhomme; Manfred Ayasse; Irena Valterová; Thomas Lecocq; Pierre Rasmont
Social parasites exploit the colony resources of social insects. Some of them exploit the host colony as a food resource or as a shelter whereas other species also exploit the brood care behavior of their social host. Some of these species have even lost the worker caste and rely completely on the hosts worker force to rear their offspring. To avoid host defenses and bypass their recognition code, these social parasites have developed several sophisticated chemical infiltration strategies. These infiltration strategies have been highly studied in several hymenopterans. Once a social parasite has successfully entered a host nest and integrated its social system, its emerging offspring still face the same challenge of avoiding host recognition. However, the strategy used by the offspring to survive within the host nest without being killed is still poorly documented. In cuckoo bumblebees, the parasite males completely lack the morphological and chemical adaptations to social parasitism that the females possess. Moreover, young parasite males exhibit an early production of species-specific cephalic secretions, used as sexual pheromones. Host workers might thus be able to recognize them. Here we used a bumblebee host-social parasite system to test the hypothesis that social parasite male offspring exhibit a chemical defense strategy to escape from host aggression during their intranidal life. Using behavioral assays, we showed that extracts from the heads of young cuckoo bumblebee males contain a repellent odor that prevents parasite males from being attacked by host workers. We also show that social parasitism reduces host worker aggressiveness and helps parasite offspring acceptance.
Current Biology | 2009
Jennifer Brodmann; Robert Twele; Wittko Francke; Luo Yibo; Song Xiqiang; Manfred Ayasse
Approximately one-third of the worlds estimated 30,000 orchid species are deceptive and do not reward their pollinators with nectar or pollen. Most of these deceptive orchids imitate the scent of rewarding flowers or potential mates. In this study, we investigated the floral scent involved in pollinator attraction to the rewardless orchid Dendrobium sinense, a species endemic to the Chinese island Hainan that is pollinated by the hornet Vespa bicolor. Via chemical analyses and electrophysiological methods, we demonstrate that the flowers of D. sinense produce (Z)-11-eicosen-1-ol and that the pollinator can smell this compound. This is a major compound in the alarm pheromones of both Asian (Apis cerana) and European (Apis mellifera) honey bees and is also exploited by the European beewolf (Philanthus triangulum) to locate its prey. This is the first time that (Z)-11-eicosen-1-ol has been identified as a floral volatile. In behavioral experiments, we demonstrate that the floral scent of D. sinense and synthetic (Z)-11-eicosen-1-ol are both attractive to hornets. Because hornets frequently capture honey bees to feed to their larvae, we suggest that the flowers of D. sinense mimic the alarm pheromone of honey bees in order to attract prey-hunting hornets for pollination.
Phytochemistry | 2011
Manfred Ayasse; Johannes Stökl; Wittko Francke
Sexually deceptive orchids mimic females of their pollinator species to attract male insects for pollination. Pollination by sexual deception has independently evolved in European, Australian, South African, and South American orchid taxa. Reproductive isolation is mainly based on pre-mating isolation barriers, the specific attraction of males of a single pollinator species, mostly bees, by mimicking the female species-specific sex-pheromone. However, in rare cases post-mating barriers have been found. Sexually deceptive orchids are ideal candidates for studies of sympatric speciation, because key adaptive traits such as the pollinator-attracting scent are associated with their reproductive success and with pre-mating isolation. During the last two decades several investigations studied processes of ecological speciation in sexually deceptive orchids of Europe and Australia. Using various methods like behavioural experiments, chemical, electrophysiological, and population-genetic analyses it was shown that minor changes in floral odour bouquets might be the driving force for pollinator shifts and speciation events. New pollinators act as an isolation barrier towards other sympatrically occurring species. Hybridization occurs because of similar odour bouquets of species and the overlap of flowering periods. Hybrid speciation can also lead to the displacement of species by the hybrid population, if its reproductive success is higher than that in the parental species.
Behavioral Ecology and Sociobiology | 2000
Florian P. Schiestl; Manfred Ayasse
Abstract We investigated odor changes and their behavioral significance in the solitary, ground-nesting bee Andrena nigroaenea. We used gas chromatography with electroantennographic detection and performed behavioral tests with males in the field using natural odor samples and synthetic compounds. We found that only cuticle extracts of young females elicited copulation attempts in the males. We demonstrated that among the 17 compounds which triggered electroantennographic responses, all-trans-farnesyl hexanoate and all-trans-farnesol were significantly more abundant in unattractive cuticle extracts of A. nigroaenea females. Dufour’s gland extracts of these females also contained greater amounts of both compounds. In bioassays using synthetic farnesyl hexanoate and farnesol we found that these compounds inhibit copulation behavior in the males. Farnesyl hexanoate is probably synthesized in Dufour’s gland and used by females for lining brood cells. We interpret the semiochemical function of farnesyl hexanoate and its precursor farnesol to have evolved secondarily. As an outcome of sexual selection, it facilitates the discrimination by males of receptive females from nesting and thus already mated individuals. The dual function of these compounds represents an elegant parsimony in the chemical communication system of this insect.
Journal of Chemical Ecology | 2007
Robert Hodgkison; Manfred Ayasse; Elisabeth K. V. Kalko; Christopher Häberlein; Stefan Schulz; Wan Aida Wan Mustapha; Akbar Zubaid; Thomas H. Kunz
We investigated the fruit odors of two bat-dispersed fig species in the Paleotropics, in relation to the foraging behavior of fruit bats, to test the following hypotheses: 1) fruit odor plays a critical role for detection and selection of ripe figs by fruit bats; 2) bat-dispersed fig species are characterized by the same, or similar, chemical compounds; and 3) total scent production, in bat-dispersed figs, increases when fruits ripen. We performed bioassays to test the effect of both natural and synthetic fig fruit odors on the foraging behavior of the short-nosed fruit bat (Cynopterus brachyotis)—an important disperser of figs within the study area. Fruit bats responded to both visual and chemical (olfactory) cues when foraging for figs. However, the strongest foraging reaction that resulted in a landing or feeding attempt was almost exclusively associated with the presence of a ripe fruit odor—either in combination with visual cues or when presented alone. Fruit bats also used fruit odors to distinguish between ripe and unripe fruits. By using gas chromatography (GC) and GC/mass spectrometry (MS), a total of 16 main compounds were identified in the ripe fruit odor of Ficus hispida and 13 in the ripe fruit odor of Ficus scortechinii—including alcohols, ketones, esters, and two terpenes. Additional compounds were also recorded in F. hispida, but not identified—four of which also occurred in F. scortechinii. Total scent production increased in both species when fruits ripened. Both natural and synthetic fruit odors resulted in feeding attempts by bats, with no feeding attempts elicited by unscented controls. Reaction rates to natural fruit odors were higher than those to synthetic blends.