Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manfred Bovi is active.

Publication


Featured researches published by Manfred Bovi.


Biomaterials | 2012

3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche.

Isabelle Leisten; Rafael Kramann; Mónica S. Ventura Ferreira; Manfred Bovi; Sabine Neuss; Patrick Ziegler; Wolfgang Wagner; Ruth Knüchel; Rebekka K. Schneider

Here, we propose a collagen-based three-dimensional (3D) environment for hematopoietic stem and progenitor cells (HPC) with mesenchymal stem cells (MSC) derived either from bone marrow (BM) or umbilical cord (UC), to recapitulate the main components of the BM niche. Mechanisms described for HPC homeostasis were systematically analyzed in comparison to the conventional liquid HPC culture. The 3D-cultivation allows dissecting two sub-populations of HPC: (I) HPC in suspension above the collagen gel and (II) migratory HPC in the collagen fibres of the collagen gel. The different sites represent distinct microenvironments with significant impact on HPC fate. HPC in niche I (suspension) are proliferative and a dynamic culture containing HPC (CD34(+)/CD38(-)), maturing myeloid cells (CD38(+), CD13(+), CAE(+)) and natural killer (NK) cells (CD56(+)). In contrast, HPC in niche II showed clonal growth with significant high levels of the primitive CD34(+)/CD38(-) phenotype with starting myeloid (CD13(+), CAE(+)) differentiation, resembling the endosteal part of the BM niche. In contrast, UC-MSC are not adequate for HSC expansion as they significantly enhance HPC proliferation and lineage commitment. In conclusion, the 3D-culture system using collagen and BM-MSC enables HPC expansion and provides a potential platform to dissect regulatory mechanisms in hematopoiesis.


Biomaterials | 2012

Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support

Mónica S. Ventura Ferreira; Willi Jahnen-Dechent; Norina Labude; Manfred Bovi; Thomas Hieronymus; Martin Zenke; Rebekka K. Schneider; Sabine Neurs

Expansion of multipotent, undifferentiated and proliferating cord blood (CB)-hematopoietic stem cells (HSC) in vitro is limited and insufficient. Bone marrow (BM) engineering in vitro allows mimicking the main components of the hematopoietic niche compared to conventional expansion strategies. In this study, four different 3D biomaterial scaffolds (PCL, PLGA, fibrin and collagen) were tested for freshly isolated cord blood (CB)-CD34(+) cell expansion in presence of (i) efficient exogenous cytokine supplementation and (ii) umbilical cord (UC)-mesenchymal stem cells (MSC). Cell morphology, growth and proliferation were analyzed in vitro as well as multi-organ engraftment and multilineage differentiation in a murine transplantation model. All scaffolds, except 3D PLGA meshes, supported CB-CD34(+) cell expansion, which was additionally stimulated by UC-MSC support. CB-CD34(+) cells cultured on human-derived 3D fibrin scaffolds with UC-MSC support i) reached the highest overall growth (5 × 10(8)-fold expansion of total nuclear cells after fourteen days and 3 × 10(7)-fold expansion of CD34(+) cells after seven days, p < 0.001), ii) maintained a more primitive immunophenotype for more cell divisions, iii) exhibited superior morphological, migratory and adhesive properties, and iv) showed the significantly highest numbers of engraftment and multilineage differentiation (CD45, CD34, CD13, CD3 and CD19) in BM, spleen and peripheral blood in long-term transplanted NSG mice compared to the other 3D biomaterial scaffolds. Thus, the 3D fibrin scaffold based BM-mimicry strategy reveals optimal requirements for translation into clinical protocols for CB expansion and transplantation.


Biomaterials | 2012

Inducing healing-like human primary macrophage phenotypes by 3D hydrogel coated nanofibres

Matthias Bartneck; Karl-Heinz Heffels; Yu Pan; Manfred Bovi; Gabriele Zwadlo-Klarwasser; Jürgen Groll

Immune cells are present in the blood and in resident tissues, and the nature of their reaction towards biomaterials is decisive for materials success or failure. Macrophages may for example be classically activated to trigger inflammation (M1), or alternatively activated which supports healing and vascularisation (M2). Here, we have generated 3D nanofibrous meshes in different porosities and precisely controlled surface chemistries comprising PLGA, hydrogel-coated protein repellant and protein repellant endowed with the bioactive peptide sequences GRGDS or GLF. We also prepared 2D substrates with corresponding surface chemistry for a systematic evaluation of primary human macrophage adhesion, migration, transcriptome expression, cytokine release and surface marker expression. Our data show that material morphology is a powerful means in biomaterial design to influence immune cell response. Flat substrates lead to an increased number of M2 classified CD163(+) macrophages. However, these M2 cells released large amounts of pro-inflammatory cytokines. In contrast, 3D nanofibres with corresponding surface chemistry yielded M1 classified 27E10(+) macrophages with a significantly increased release of pro-angiogenic chemokines and angiogenesis related molecules and a strong decrease of pro-inflammatory cytokines. We thus suggest that, for macrophages in contact with biomaterials, cytokine release is taken as main criterion instead of surface-markers for macrophage classifications.


Cell Transplantation | 2008

Long-Term Survival and Bipotent Terminal Differentiation of Human Mesenchymal Stem Cells (hMSC) in Combination with a Commercially Available Three-Dimensional Collagen Scaffold:

Sabine Neuss; Rebekah Stainforth; Jochen Salber; P. Schenck; Manfred Bovi; Ruth Knüchel; Alberto Perez-Bouza

Researchers working in the field of tissue engineering ideally combine autologous cells and biocompatible scaffolds to replace defect tissues/organs. Due to their differentiation capacity, mesenchym-derived stem cells, such as human mesenchymal stem cells (hMSC), are a promising autologous cell source for the treatment of human diseases. As natural precursors for mesenchymal tissues, hMSC are particularly suitable for bone, cartilage, and adipose tissue replacement. In this study a detailed histological and ultrastructural analysis of long-term cultured and terminally differentiated hMSC on 3D collagen scaffolds was performed. Standardized 2D differentiation protocols for hMSC into adipocytes and osteoblasts were adapted for long-term 3D in vitro cultures in porous collagen matrices. After a 50-day culture period, large numbers of mature adipocytes and osteoblasts were clearly identifiable within the scaffolds. The adipocytes exhibited membrane free lipid vacuoles. The osteoblasts were arranged in close association with hydroxyapatite crystals, which were deposited on the surrounding fibers. The collagen matrix was remodeled and adopted a contracted and curved form. Human MSC survive long-term culture within these scaffolds and could be terminally differentiated into adipocytes and osteoblasts. Thus, the combination of hMSC and this particular collagen scaffold is a possible candidate for bone and adipose tissue replacement strategies.


Biomaterials | 2010

The role of biomaterials in the direction of mesenchymal stem cell properties and extracellular matrix remodelling in dermal tissue engineering

Rebekka K. Schneider; Julia Anraths; Rafael Kramann; Jörg Bornemann; Manfred Bovi; Ruth Knüchel; Sabine Neuss

Recently, a new generation of dermal equivalents (DE) was presented which are solely generated on a human fibroblast-derived dermal matrix. Since human mesenchymal stem cells from bone marrow (BM-MSC) and Whartons Jelly of the umbilical cord (UC-MSC) are characterised by a distinct biosynthetic and paracrine activity, they are an appealing alternative approach for generating cell-based DE. This study compares the epithelial-mesenchymal interaction and extracellular matrix (ECM) remodelling of cell-based and collagen-based DE using fibroblasts, BM-MSC or UC-MSC, respectively, in co-culture with the keratinocyte cell line HaCaT. While fibroblast-based DE exhibit normal matrix synthesis, proliferation and differentiation of keratinocytes, mesenchymal stem cell-based DE resulted in excessive production of inhomogenous matrix aggregates, loss of polarisation of the epidermal cell layer and an inconstant paracrine activity. In contrast, collagen-embedded MSC revealed a homogenous growth pattern as well as a constant expression of growth factors and ECM proteins without a negative influence on the epidermal layer as shown by histology, electron microscopy, immunohistochemistry and realtime-RT-PCR. These results indicate the necessity of an instructive biomaterial-based scaffold to direct stem cell differentiation, proliferation, paracrine activity as well as regulation of ECM deposition.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Exposure to Uremic Serum Induces a Procalcific Phenotype in Human Mesenchymal Stem Cells

Rafael Kramann; Simone K. Couson; Sabine Neuss; Uta Kunter; Manfred Bovi; Jörg Bornemann; Ruth Knüchel; Willi Jahnen-Dechent; Jürgen Floege; Rebekka K. Schneider

Objective— Medial artery calcification in patients with chronic kidney disease proceeds through intramembranous ossification resulting from osteoblast-induced calcification of the collagen extracellular matrix. The current study is based on the hypothesis that mesenchymal stem cells (MSC) constitute critical cells for procalcific extracellular matrix remodeling in patients with chronic kidney disease. Methods and Results— Human MSC were cultured in media supplemented with pooled sera from either healthy or uremic patients (20%). Exposure to uremic serum enhanced the proliferation of MSC (cell counting, BrdU incorporation) whereas apoptosis and necrosis were not affected (annexin V and 7-amino-actinomycin staining). Uremic serum–exposed MSC recapitulated osteogenesis by matrix calcification and expression of bone-related genes (bone morphogenetic protein [BMP]-2 receptor, alkaline phosphatase, osteopontin, and Runx2) in 35 days. The uremic serum–induced osteogenesis was completely blocked by a BMP-2/4 neutralizing antibody or the natural antagonist NOGGIN. Calcification and matrix remodeling were further analyzed in a collagen-embedded osteogenesis model recapitulating the vascular collagen I/III environment. The uremic serum–induced calcification was shown to occur along collagen fibers as shown by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and von Kossa staining and was accompanied by extensive matrix remodeling. Conclusion— Uremic serum induced in a BMP-2/4-dependent manner an osteoblast-like phenotype in MSC accompanied by matrix remodeling and calcification.


Nephrology Dialysis Transplantation | 2013

Novel insights into osteogenesis and matrix remodelling associated with calcific uraemic arteriolopathy

Rafael Kramann; Vincent Brandenburg; Leon J. Schurgers; Markus Ketteler; Saskia Westphal; Isabelle Leisten; Manfred Bovi; Willi Jahnen-Dechent; Ruth Knüchel; Jürgen Floege; Rebekka K. Schneider

BACKGROUND Calcific uraemic arteriolopathy (CUA) or calciphylaxis is a rare, life-threatening disease predominantly occurring in patients with end-stage renal disease. Its pathogenesis has been suggested to include ectopic osteogenesis in soft tissue and the vasculature associated with extracellular matrix (ECM) remodelling. METHODS To gain further insights into the pathogenesis of CUA, we performed systematic analyses of skin specimens obtained from seven CUA patients including histology, immunohistochemistry, electron microscopy, electron dispersive X-ray analysis (EDX) and quantitative real-time RT-PCR. Skin specimens of (i) seven patients without chronic kidney disease and without CUA and (ii) seven dialysis patients without CUA served as controls. RESULTS In the CUA skin lesions, we observed a significant upregulation of bone morphogenic protein 2 (BMP-2), its target gene Runx2 and its indirect antagonist sclerostin. Furthermore, we detected an increased expression of inactive uncarboxylated matrix Gla protein (Glu-MGP). The upregulation of osteogenesis-associated markers was accompanied by an increased expression of osteopontin, fibronectin, laminin and collagen I indicating an extensive remodelling of the subcutaneous ECM. EDX analysis revealed calcium/phosphate accumulations in the subcutis of all CUA patients with a molar ratio of 1.68 ± 0.06 matching that of hydroxyapatite mineral. Widespread media calcification in cutaneous arterioles was associated with destruction of the endothelial layer and partial exfoliation of the endothelial cells (ECs). CD31 immunostaining revealed aggregates of ECs contributing to intraluminal obstruction and consecutive malperfusion resulting in the clinical picture of ulcerative necrosis in all seven patients. CONCLUSIONS Our data indicate that CUA is an active osteogenic process including the upregulation of BMP-2 signalling, hydroxyapatite deposition and extensive matrix remodelling of the subcutis.


Platelets | 2012

Platelets display potent antimicrobial activity and release human beta-defensin 2

Mersedeh Tohidnezhad; Deike Varoga; Christoph Jan Wruck; Rainer Podschun; Benita Hermanns Sachweh; Jörg Bornemann; Manfred Bovi; Taha Tolga Sönmez; Alexander Slowik; Astrid Houben; Andreas Seekamp; Lars Ove Brandenburg; Thomas Pufe; Sebastian Lippross

Platelet-rich plasma (PRP) is a potent agent that improves soft tissue and bone healing. By the release of growth factors and cytokines, PRP is believed to locally boost physiologic healing processes. Recently, antimicrobial activity of PRP has been demonstrated against S. aureus strains. Major scientific effort is being put into the understanding and prevention of infections i.e. by delivery of antimicrobial substances. In previous studies we showed the ideal antibacterial activity-profile of the human beta-defensin 2 (hBD-2) for orthopaedic infections and therefore hypothesized that hBD-2 may be the effector of antimicrobial platelet action. Platelet concentrates were produced from human platelet phresis obtained from a hospital blood bank. They were screened by immunohistochemistry, Western Blot and ELISA for the human beta defensin-2. In vitro susceptibility to PRP was investigated by a standard disc diffusion test with or without pre-incubation of PRP with anti-hBD-2 antibody. SPSS statistical software was used for statistical analysis. PRP contains hBD-2 470 pg/109 platelets or 1786 pg/ml, respectively, (ELISA), which was confirmed by immunohistochemistry and Western Blot. In antimicrobial testing, PRP demonstrates effective inhibition of E. coli, B. megaterium, P. aeruginosa, E. faecalis and P. mirabilis. With this study we confirm the previously reported antimicrobial action of platelet concentrates i.e. PRP. In opposition to previously reported effects against gram positive bacteria our study focuses on gram negative and less common gram positive bacteria that do frequently cause clinical complications. We provide a possible molecular mechanism at least for E. coli and P. mirabilis for this effect by the detection of an antimicrobial peptide (hBD-2). This study may advocate the clinical use of PRP by highlighting a new aspect of platelet action.


PLOS ONE | 2011

Transcriptome Analysis of MSC and MSC-Derived Osteoblasts on Resomer® LT706 and PCL: Impact of Biomaterial Substrate on Osteogenic Differentiation

Sabine Neuss; Bernd Denecke; Lin Gan; Qiong Lin; Manfred Bovi; Christian Apel; Michael Wöltje; Anandhan Dhanasingh; Jochen Salber; Ruth Knüchel; Martin Zenke

Background Mesenchymal stem cells (MSC) represent a particularly attractive cell type for bone tissue engineering because of their ex vivo expansion potential and multipotent differentiation capacity. MSC are readily differentiated towards mature osteoblasts with well-established protocols. However, tissue engineering frequently involves three-dimensional scaffolds which (i) allow for cell adhesion in a spatial environment and (ii) meet application-specific criteria, such as stiffness, degradability and biocompatibility. Methodology/Principal Findings In the present study, we analysed two synthetic, long-term degradable polymers for their impact on MSC-based bone tissue engineering: PLLA-co-TMC (Resomer® LT706) and poly(ε-caprolactone) (PCL). Both polymers enhance the osteogenic differentiation compared to tissue culture polystyrene (TCPS) as determined by Alizarin red stainings, scanning electron microscopy, PCR and whole genome expression analysis. Resomer® LT706 and PCL differ in their influence on gene expression, with Resomer® LT706 being more potent in supporting osteogenic differentiation of MSC. The major trigger on the osteogenic fate, however, is from osteogenic induction medium. Conclusion This study demonstrates an enhanced osteogenic differentiation of MSC on Resomer® LT706 and PCL compared to TCPS. MSC cultured on Resomer® LT706 showed higher numbers of genes involved in skeletal development and bone formation. This identifies Resomer® LT706 as particularly attractive scaffold material for bone tissue engineering.


Materials Science and Engineering: C | 2013

The role of substrate morphology for the cytokine release profile of immature human primary macrophages.

Matthias Bartneck; Karl-Heinz Heffels; Manfred Bovi; Jürgen Groll; Gabriele Zwadlo-Klarwasser

There is increasing evidence that the physicochemical nature of any given material is a dominant factor for the release of cytokines by innate immune cells, specifically of macrophages, and thus majorly influences their interaction with other cell types. Recently, we could show that the 3D structure of star shaped polytheylene oxide-polypropylene oxide co-polymers (sP(EO-stat-PO))-hydrogel coated substrates has a stronger influence on the release pattern of cytokines after 7 days of culture than surface chemistry. Here, we focused on the analysis of cytokine release over time and a more detailed analysis of cell morphology by scanning electron microscopy (SEM). Therefore, we compared different strategies for SEM sample preparation and found that using osmium tetroxide combined with aqua bidest led to best preparation results. For cytokine release we show significant changes from day 3 to day 7 of cell culture. After 3 days, the sP(EO-stat-PO)-coated substrates led to an induction of pro-angiogenic CCL3 and CCL4, and of low amounts of the anti-inflammatory IL10, which declined at day 7. In contrast, pleiotropic IL6 and the pro-inflammatory TNFα and IL1β were expressed stronger at day 7 than at day 3.

Collaboration


Dive into the Manfred Bovi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge