Manfred Brandt
Humboldt University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manfred Brandt.
Performance Evaluation | 1999
Andreas Brandt; Manfred Brandt
The paper is concerned with the analysis of an s-server queueing system wherein the calls may leave the system due to impatience. The individual maximal waiting times are assumed to be i.i.d. and arbitrarily distributed. The arrival and cumulative service rates may depend on the number n of calls in the system, but the service rate is assumed to be constant for n>s. For this system, denoted by M(n)/M(n)/s+GI, we derive a system of integral equations for the vector of the residual maximal waiting times of the waiting calls and their original maximal waiting times. By solving these equations explicitly we obtain the stability condition and for the steady state of the system, the occupancy distribution and various waiting time distributions. The results are also new for special cases analyzed in earlier papers. As an application of the M(n)/M(n)/s+GI system we give a performance analysis of an automatic call distributor system (ACD system) of finite capacity with outbound and impatient inbound calls; numerical results are given for the case of maximal waiting times as the minimum of constant and exponentially distributed times.
Queueing Systems | 2002
Andreas Brandt; Manfred Brandt
In this paper for the M(n)/M(n)/s+GI system, i.e. for a s-server queueing system where the calls in the queue may leave the system due to impatience, we present new asymptotic results for the intensities of calls leaving the system due to impatience and a Markovian system approximation where these results are applied. Furthermore, we present a new proof for the formulae of the conditional density of the virtual waiting time distributions, recently given by Movaghar for the less general M(n)/M/s+GI system. Also we obtain new explicit expressions for refined virtual waiting time characteristics as a byproduct.
Methodology and Computing in Applied Probability | 1999
Andreas Brandt; Manfred Brandt
We consider an s-server priority system with a protected and an unprotected queue. The arrival rates at the queues and the service rate may depend on the number n of customers being in service or in the protected queue, but the service rate is assumed to be constant for n > s. As soon as any server is idle, a customer from the protected queue will be served according to the FCFS discipline. However, the customers in the protected queue are impatient. If the offered waiting time exceeds a random maximal waiting time I, then the customer leaves the protected queue after time I. If I is less than a given deterministic time, then he leaves the system, else he will be transferred by the system to the unprotected queue. The service of a customer from the unprotected queue will be started if the protected queue is empty and more than a given number of servers become idle. The model is a generalization of the many-server queue with impatient customers. The global balance conditions seem to have no explicit solution. However, the balance conditions for the density of the stationary state process for the subsystem of customers being in service or in the protected queue can be solved. This yields the stability conditions and the probabilities that precisely n customers are in service or in the protected queue. For obtaining performance measures for the unprotected queue, a system approximation based on fitting impatience intensities is constructed. The results are applied to the performance analysis of a call center with an integrated voice-mail-server.
Queueing Systems | 2004
Andreas Brandt; Manfred Brandt
The paper deals with the two-class priority M/M/1 system, where the prioritized class-1 customers are served under FCFS preemptive resume discipline and may become impatient during their waiting for service with generally distributed maximal waiting times. The class-2 customers have no impatience. The required mean service times may depend on the class of the customer. As the dynamics of class-1 customers are related to the well analyzed M/M/1+GI system, our aim is to derive characteristics for class-2 customers and for the whole system. The solution of the balance equations for the partial probability generating functions of the detailed system state process is given in terms of the weak solution of a family of boundary value problems for ordinary differential equations, where the latter can be solved explicitly only for particular distributions of the maximal waiting times. By means of this solution formulae for the joint occupancy distribution and for the sojourn and waiting times of class-2 customers are derived generalizing corresponding results recently obtained by Choi et al. in case of deterministic maximal waiting times. The latter case is dealt as an example in our paper.
Queueing Systems | 2006
Andreas Brandt; Manfred Brandt
For the single server system under processor sharing (PS) a sample path result for the sojourn times in a busy period is proved, which yields a sample path relation between the sojourn times under PS and FCFS discipline. This relation provides a corresponding one between the mean stationary sojourn times in G/G/1 under PS and FCFS. In particular, the mean stationary sojourn time in G/D/1 under PS is given in terms of the mean stationary sojourn time under FCFS, generalizing known results for GI/M/1 and M/GI/1. Extensions of these results suggest an approximation of the mean stationary sojourn time in G/GI/1 under PS in terms of the mean stationary sojourn time under FCFS.
Queueing Systems | 1990
Andreas Brandt; Manfred Brandt; Hannelore Sulanke
We study a discrete-time single-server queue where batches of messages arrive. Each message consists of a geometrically distributed number of packets which do not arrive at the same instant and which require a time unit as service time. We consider the cases of constant spacing and geometrically distributed (random) spacing between consecutive packets of a message. For the probability generating function of the stationary distribution of the embedded Markov chain we derive in both cases a functional equation which involves a boundary function. The stationary mean number of packets in the system can be computed via this boundary function without solving the functional equation. In case of constant (random) spacing the boundary function can be determined by solving a finite-dimensional (an infinite-dimensional) system of linear equations numerically.For Poisson- and Bernoulli-distributed arrivals of messages numerical results are presented. Further, limiting results are derived.
Mathematical Methods of Operations Research | 1998
Andreas Brandt; Manfred Brandt
We consider a single server system consisting of e queues with different types of customers (Poisson streams) andk permanent customers. The permanent customers and those at the head of the queues are served in processor-sharing by the service facility (head-of-the-line processor-sharing). The stability condition and a pseudo work conservation law will be given for arbitrary service time distributions; for exponential service times a pseudo conservation law for the mean sojourn tunes can be derived. In case of two queues and exponential service times, the generating function of the stationary occupancy distribution satisfies a functional equation being a Riemann-Hilbert problem which can be reduced to a Dirichlet problem for a circle. The solution yields the mean sojourn times as an elliptic integral, which can be computed numerically very efficiently. In case ofn ≥ 2 a numerical algorithm for computing the performance measures is presented, which is efficient forn ≤ 3. Since forn ≥ 4 an exact analytical or/and numerical treatment is too complex a heuristic approximation for the mean sojourn times of the different types of customers is given, which in case of a (completely) symmetric system is exact. The numerical and simulation results show that, over a wide range of parameters, the approximation works well.
Queueing Systems | 2008
Andreas Brandt; Manfred Brandt
We consider a system where the arrivals form a Poisson process and the required service times of the requests are exponentially distributed. The requests are served according to the state-dependent (Cohen’s generalized) processor sharing discipline, where each request in the system receives a service capacity which depends on the actual number of requests in the system. For this system we derive systems of ordinary differential equations for the LST and for the moments of the conditional waiting time of a request with given required service time as well as a stable and fast recursive algorithm for the LST of the second moment of the conditional waiting time, which in particular yields the second moment of the unconditional waiting time. Moreover, asymptotically tight upper bounds for the moments of the conditional waiting time are given. The presented numerical results for the first two moments of the sojourn times in M/M/m−PS systems show that the proposed algorithms work well.
Methodology and Computing in Applied Probability | 2002
Andreas Brandt; Manfred Brandt
In circuit-switched networks call streams are characterized by their mean and peakedness (two-moment method). The GI/M/C/0 system is used to model a single link, where the GI-stream is determined by fitting moments appropriately. For the moments of the overflow traffic of a GI/M/C/0 system there are efficient numerical algorithms available. However, for the moments of the freed carried traffic, defined as the moments of a virtual link of infinite capacity to which the process of calls accepted by the link (carried arrival process) is virtually directed and where the virtual calls get fresh exponential i.i.d. holding times, only complex numerical algorithms are available. This is the reason why the concept of the freed carried traffic is not used. The main result of this paper is a numerically stable and efficient algorithm for computing the moments of freed carried traffic, in particular an explicit formula for its peakedness. This result offers a unified handling of both overflow and carried traffics in networks. Furthermore, some refined characteristics for the overflow and freed carried streams are derived.
Queueing Systems | 1994
Andreas Brandt; Manfred Brandt
Fluid flow approximations are widely used for approximating models of communication systems where packet arrival streams are generated in a regular manner over certain intervals (constant rate). The appropriate mathematical model for describing those bursty arrival streams in the fluid flow framework are the well-known Markov modulated rate processes (MMRP). The paper deals with the distribution of the numberN(t) of packets in the interval [0,t] of MMRP. For two-state MMRPs and their superpositions we derive formulas for the distribution ofN(t) and its density. Further we give asymptotic results. The presented numerical results and simulation studies illustrate the goodness of the fluid flow approximation and show that the proposed numerical algorithms work well even in the case of multiplexing a large number of burst silence sources.