Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manfred Fliegauf is active.

Publication


Featured researches published by Manfred Fliegauf.


Nature Reviews Molecular Cell Biology | 2007

When cilia go bad: cilia defects and ciliopathies

Manfred Fliegauf; Thomas Benzing; Heymut Omran

Defects in the function of cellular organelles such as peroxisomes, lysosomes and mitochondria are well-known causes of human diseases. Recently, another organelle has also been added to this list. Cilia — tiny hair-like organelles attached to the cell surface — are located on almost all polarized cell types of the human body and have been adapted as versatile tools for various cellular functions, explaining why cilia-related disorders can affect many organ systems. Several molecular mechanisms involved in cilia-related disorders have been identified that affect the structure and function of distinct cilia types.


The EMBO Journal | 2002

The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons

Ditsa Levanon; David Bettoun; Catherine Harris-Cerruti; Eilon Woolf; Varda Negreanu; Raya Eilam; Yael Bernstein; Dalia Goldenberg; Cuiying Xiao; Manfred Fliegauf; E. Kremer; Florian Otto; Ori Brenner; Aharon Lev-Tov; Yoram Groner

The RUNX transcription factors are important regulators of linage‐specific gene expression in major developmental pathways. Recently, we demonstrated that Runx3 is highly expressed in developing cranial and dorsal root ganglia (DRGs). Here we report that within the DRGs, Runx3 is specifically expressed in a subset of neurons, the tyrosine kinase receptor C (TrkC) proprioceptive neurons. We show that Runx3‐deficient mice develop severe limb ataxia due to disruption of monosynaptic connectivity between intra spinal afferents and motoneurons. We demonstrate that the underlying cause of the defect is a loss of DRG proprioceptive neurons, reflected by a decreased number of TrkC‐, parvalbumin‐ and β‐galactosidase‐positive cells. Thus, Runx3 is a neurogenic TrkC neuron‐specific transcription factor. In its absence, TrkC neurons in the DRG do not survive long enough to extend their axons toward target cells, resulting in lack of connectivity and ataxia. The data provide new genetic insights into the neurogenesis of DRGs and may help elucidate the molecular mechanisms underlying somatosensory‐related ataxia in humans.


Nature Genetics | 2003

Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis.

Heike Olbrich; Manfred Fliegauf; Julia Hoefele; Andreas Kispert; Edgar A. Otto; Andreas Volz; Matthias Wolf; Gürsel Sasmaz; Ute Trauer; Richard Reinhardt; Ralf Sudbrak; Corinne Antignac; Norbert Gretz; Gerd Walz; Bernhard Schermer; Thomas Benzing; Friedhelm Hildebrandt; Heymut Omran

Nephronophthisis (NPHP), a group of autosomal recessive cystic kidney disorders, is the most common genetic cause of progressive renal failure in children and young adults. NPHP may be associated with Leber congenital amaurosis, tapeto-retinal degeneration, cerebellar ataxia, cone-shaped epiphyses, congenital oculomotor apraxia and hepatic fibrosis. Loci associated with an infantile type of NPHP on 9q22–q31 (NPHP2), juvenile types of NPHP on chromosomes 2q12–q13 (NPHP1) and 1p36 (NPHP4) and an adolescent type of NPHP on 3q21–q22 (NPHP3) have been mapped. NPHP1 and NPHP4 have been identified, and interaction of the respective encoded proteins nephrocystin and nephrocystin-4 has been shown. Here we report the identification of NPHP3, encoding a novel 1,330-amino acid protein that interacts with nephrocystin. We describe mutations in NPHP3 in families with isolated NPHP and in families with NPHP with associated hepatic fibrosis or tapeto-retinal degeneration. We show that the mouse ortholog Nphp3 is expressed in the node, kidney tubules, retina, respiratory epithelium, liver, biliary tract and neural tissues. In addition, we show that a homozygous missense mutation in Nphp3 is probably responsible for the polycystic kidney disease (pcy) mouse phenotype. Interventional studies in the pcy mouse have shown beneficial effects by modification of protein intake and administration of methylprednisolone, suggesting therapeutic strategies for treating individuals with NPHP3.


American Journal of Human Genetics | 2008

Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia.

Carsten Bergmann; Manfred Fliegauf; Nadina Ortiz Brüchle; Valeska Frank; Heike Olbrich; J. Kirschner; Bernhard Schermer; Ingolf Schmedding; Andreas Kispert; Bettina Kränzlin; Gudrun Nürnberg; Christian Becker; Tiemo Grimm; Gundula Girschick; Sally Ann Lynch; Peter Kelehan; Jan Senderek; Thomas J. Neuhaus; Thomas Stallmach; Hanswalter Zentgraf; Peter Nürnberg; Norbert Gretz; Cecilia Lo; Soeren S. Lienkamp; Tobias Schäfer; Gerd Walz; Thomas Benzing; Klaus Zerres; Heymut Omran

Many genetic diseases have been linked to the dysfunction of primary cilia, which occur nearly ubiquitously in the body and act as solitary cellular mechanosensory organelles. The list of clinical manifestations and affected tissues in cilia-related disorders (ciliopathies) such as nephronophthisis is broad and has been attributed to the wide expression pattern of ciliary proteins. However, little is known about the molecular mechanisms leading to this dramatic diversity of phenotypes. We recently reported hypomorphic NPHP3 mutations in children and young adults with isolated nephronophthisis and associated hepatic fibrosis or tapetoretinal degeneration. Here, we chose a combinatorial approach in mice and humans to define the phenotypic spectrum of NPHP3/Nphp3 mutations and the role of the nephrocystin-3 protein. We demonstrate that the pcy mutation generates a hypomorphic Nphp3 allele that is responsible for the cystic kidney disease phenotype, whereas complete loss of Nphp3 function results in situs inversus, congenital heart defects, and embryonic lethality in mice. In humans, we show that NPHP3 mutations can cause a broad clinical spectrum of early embryonic patterning defects comprising situs inversus, polydactyly, central nervous system malformations, structural heart defects, preauricular fistulas, and a wide range of congenital anomalies of the kidney and urinary tract (CAKUT). On the functional level, we show that nephrocystin-3 directly interacts with inversin and can inhibit like inversin canonical Wnt signaling, whereas nephrocystin-3 deficiency leads in Xenopus laevis to typical planar cell polarity defects, suggesting a role in the control of canonical and noncanonical (planar cell polarity) Wnt signaling.


Blood | 2009

Mutations in CBL occur frequently in juvenile myelomonocytic leukemia

Mignon L. Loh; Debbie Sakai; Christian Flotho; Michelle Kang; Manfred Fliegauf; Sophie Archambeault; Charles G. Mullighan; Leslie Chen; Eva Bergstraesser; Carlos E. Bueso-Ramos; Peter D. Emanuel; Henrik Hasle; Jean-Pierre J. Issa; Marry M. van den Heuvel-Eibrink; Franco Locatelli; Jan Starý; Monica Trebo; Marcin W. Wlodarski; Marco Zecca; Kevin Shannon; Charlotte M. Niemeyer

Juvenile myelomonocytic leukemia is an aggressive myeloproliferative disorder characterized by malignant transformation in the hematopoietic stem cell compartment with proliferation of differentiated progeny. Seventy-five percent of patients harbor mutations in the NF1, NRAS, KRAS, or PTPN11 genes, which encode components of Ras signaling networks. Using single nucleotide polymorphism arrays, we identified a region of 11q isodisomy that contains the CBL gene in several JMML samples, and subsequently identified CBL mutations in 27 of 159 JMML samples. Thirteen of these mutations alter codon Y371. In this report, we also demonstrate that CBL and RAS/PTPN11 mutations were mutually exclusive in these patients. Moreover, the exclusivity of CBL mutations with respect to other Ras pathway-associated mutations indicates that CBL may have a role in deregulating this key pathway in JMML.


Nature Genetics | 2011

CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs

Anne-Christine Merveille; Erica E. Davis; Anita Becker-Heck; Marie Legendre; Israel Amirav; Géraldine Bataille; John W. Belmont; Nicole Beydon; Frédéric Billen; Annick Clement; Cécile Clercx; André Coste; Rachelle H. Crosbie; Jacques de Blic; S. Deleuze; Philippe Duquesnoy; Denise Escalier; Estelle Escudier; Manfred Fliegauf; Judith Horvath; Kent L. Hill; Mark Jorissen; Jocelyne Just; Andreas Kispert; Mark Lathrop; Niki T. Loges; June K. Marthin; Yukihide Momozawa; Guy Montantin; Kim G. Nielsen

Primary ciliary dyskinesia (PCD) is an inherited disorder characterized by recurrent infections of the upper and lower respiratory tract, reduced fertility in males and situs inversus in about 50% of affected individuals (Kartagener syndrome). It is caused by motility defects in the respiratory cilia that are responsible for airway clearance, the flagella that propel sperm cells and the nodal monocilia that determine left-right asymmetry. Recessive mutations that cause PCD have been identified in genes encoding components of the outer dynein arms, radial spokes and cytoplasmic pre-assembly factors of axonemal dyneins, but these mutations account for only about 50% of cases of PCD. We exploited the unique properties of dog populations to positionally clone a new PCD gene, CCDC39. We found that loss-of-function mutations in the human ortholog underlie a substantial fraction of PCD cases with axonemal disorganization and abnormal ciliary beating. Functional analyses indicated that CCDC39 localizes to ciliary axonemes and is essential for assembly of inner dynein arms and the dynein regulatory complex.


Nature Genetics | 2011

The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation

Anita Becker-Heck; Irene E. Zohn; Noriko Okabe; Andrew Pollock; Kari Baker Lenhart; Jessica Sullivan-Brown; Jason McSheene; Niki T. Loges; Heike Olbrich; Karsten Haeffner; Manfred Fliegauf; Judith Horvath; Richard Reinhardt; Kim G. Nielsen; June K. Marthin; György Baktai; Kathryn V. Anderson; Robert Geisler; Lee Niswander; Heymut Omran; Rebecca D. Burdine

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous autosomal recessive disorder characterized by recurrent infections of the respiratory tract associated with the abnormal function of motile cilia. Approximately half of individuals with PCD also have alterations in the left-right organization of their internal organ positioning, including situs inversus and situs ambiguous (Kartageners syndrome). Here, we identify an uncharacterized coiled-coil domain containing a protein, CCDC40, essential for correct left-right patterning in mouse, zebrafish and human. In mouse and zebrafish, Ccdc40 is expressed in tissues that contain motile cilia, and mutations in Ccdc40 result in cilia with reduced ranges of motility. We further show that CCDC40 mutations in humans result in a variant of PCD characterized by misplacement of the central pair of microtubules and defective assembly of inner dynein arms and dynein regulatory complexes. CCDC40 localizes to motile cilia and the apical cytoplasm and is required for axonemal recruitment of CCDC39, disruption of which underlies a similar variant of PCD.


American Journal of Human Genetics | 2008

DNAI2 Mutations Cause Primary Ciliary Dyskinesia with Defects in the Outer Dynein Arm

Niki T. Loges; Heike Olbrich; Lale Fenske; Huda Mussaffi; Judit Horvath; Manfred Fliegauf; Heiner Kuhl; György Baktai; Rahul Chodhari; Eddie M. K. Chung; Andrew Rutman; Christopher O'Callaghan; Hannah Blau; László Tiszlavicz; Katarzyna Voelkel; Michał Witt; Ewa Ziętkiewicz; Juergen Neesen; Richard Reinhardt; Hannah M. Mitchison; Heymut Omran

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by chronic destructive airway disease and randomization of left/right body asymmetry. Males often have reduced fertility due to impaired sperm tail function. The complex PCD phenotype results from dysfunction of cilia of the airways and the embryonic node and the structurally related motile sperm flagella. This is associated with underlying ultrastructural defects that frequently involve the outer dynein arm (ODA) complexes that generate cilia and flagella movement. Applying a positional and functional candidate-gene approach, we identified homozygous loss-of-function DNAI2 mutations (IVS11+1G > A) in four individuals from a family with PCD and ODA defects. Further mutational screening of 105 unrelated PCD families detected two distinct homozygous mutations, including a nonsense (c.787C > T) and a splicing mutation (IVS3-3T > G) resulting in out-of-frame transcripts. Analysis of protein expression of the ODA intermediate chain DNAI2 showed sublocalization throughout respiratory cilia. Electron microscopy showed that mutant respiratory cells from these patients lacked DNAI2 protein expression and exhibited ODA defects. High-resolution immunofluorescence imaging demonstrated absence of the ODA heavy chains DNAH5 and DNAH9 from all DNAI2 mutant ciliary axonemes. In addition, we demonstrated complete or distal absence of DNAI2 from ciliary axonemes in respiratory cells of patients with mutations in genes encoding the ODA chains DNAH5 and DNAI1, respectively. Thus, DNAI2 and DNAH5 mutations affect assembly of proximal and distal ODA complexes, whereas DNAI1 mutations mainly disrupt assembly of proximal ODA complexes.


Journal of Cell Biology | 2006

The von Hippel-Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth

Bernhard Schermer; Cristina Ghenoiu; Malte P. Bartram; Roman Ulrich Müller; Fruzsina Kotsis; Martin Höhne; Wolfgang Kühn; Manuela Rapka; Roland Nitschke; Hanswalter Zentgraf; Manfred Fliegauf; Heymut Omran; Gerd Walz; Thomas Benzing

Cilia are specialized organelles that play an important role in several biological processes, including mechanosensation, photoperception, and osmosignaling. Mutations in proteins localized to cilia have been implicated in a growing number of human diseases. In this study, we demonstrate that the von Hippel-Lindau (VHL) protein (pVHL) is a ciliary protein that controls ciliogenesis in kidney cells. Knockdown of pVHL impeded the formation of cilia in mouse inner medullary collecting duct 3 kidney cells, whereas the expression of pVHL in VHL-negative renal cancer cells rescued the ciliogenesis defect. Using green fluorescent protein–tagged end-binding protein 1 to label microtubule plus ends, we found that pVHL does not affect the microtubule growth rate but is needed to orient the growth of microtubules toward the cell periphery, a prerequisite for the formation of cilia. Furthermore, pVHL interacts with the Par3–Par6–atypical PKC complex, suggesting a mechanism for linking polarity pathways to microtubule capture and ciliogenesis.


Human Genetics | 2006

A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral–facial–digital type I syndrome

B Budny; Wei Chen; Heymut Omran; Manfred Fliegauf; Andreas Tzschach; Marzena Wisniewska; Lars R. Jensen; Martine Raynaud; Sarah A. Shoichet; Magda Badura; Steffen Lenzner; Anna Latos-Bielenska; Hans-Hilger Ropers

We report on a large family in which a novel X-linked recessive mental retardation (XLMR) syndrome comprising macrocephaly and ciliary dysfunction co-segregates with a frameshift mutation in the OFD1 gene. Mutations of OFD1 have been associated with oral–facial–digital type 1 syndrome (OFD1S) that is characterized by X-chromosomal dominant inheritance and lethality in males. In contrast, the carrier females of our family were clinically inconspicuous, and the affected males suffered from severe mental retardation, recurrent respiratory tract infections and macrocephaly. All but one of the affected males died from respiratory problems in infancy; and impaired ciliary motility was confirmed in the index patient by high-speed video microscopy examination of nasal epithelium. This family broadens the phenotypic spectrum of OFD1 mutations in an unexpected way and sheds light on the complexity of the underlying disease mechanisms.

Collaboration


Dive into the Manfred Fliegauf's collaboration.

Top Co-Authors

Avatar

Heymut Omran

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Heike Olbrich

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niki T. Loges

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobias Berg

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge