Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mang-Jye Ger is active.

Publication


Featured researches published by Mang-Jye Ger.


Plant Molecular Biology | 2003

Ferredoxin from sweet pepper (Capsicum annuum L.) intensifying harpinpss-mediated hypersensitive response shows an enhanced production of active oxygen species (AOS)

Badri Venkata Dayakar; Hao Jan Lin; Cheng-Hsien Chen; Mang-Jye Ger; Bor Heng Lee; Chia Hwei Pai; David T. Chow; Hsiang En Huang; Shaw Yhi Hwang; Mei Chu Chung; Teng-Yung Feng

The hypersensitive response (HR) is a form of cell death associated with plant resistance to pathogen infection. Harpinpss, an elicitor from the bacterium Pseudomonas syringae pv. syringae, induces a HR in non-host plants. Previously, we reported an amphipathic protein from sweet pepper interfering with harpinpss-mediated HR. In this report, we isolated and characterized a cDNA clone encoded that amphipathic protein from sweet pepper. This protein is designated as PFLP (plant ferredoxin-like protein) by virtue of its high homology with plant ferredoxin protein containing an N-terminal signal peptide responsible for chloroplast targeting and a putative 2Fe-2S domain responsible for redox activity. Recombinant PFLP obtained from Escherichia coliwas able to significantly increase active oxygen species (AOS) generation when mixed with harpinpss in tobacco suspension cells. It also showed enhanced HR when co-infiltrated with harpinpss in tobacco leaves. We used a transgenic tobacco suspension cells system that constitutively expresses the Pflpgene driven by the CaMV 35S promoter to study the function of PFLP in enhancing harpinpss-mediated hypersensitive cell death in vivo. In response to harpinpss, suspension cells derived from Pflptransgenic tobacco showed a significant increase both in the generation of AOS and in cell death as compared to the wild type. AOS inhibitors diphenylene iodonium chloride (DPI) and lanthanum chlorate (LaCl3) were used to study the involvement of AOS in harpinpss-induced cell death. Our results demonstrate enhanced generation of AOS is necessary to cause enhanced hypersensitive cell death in Pflp transgenic tobacco cells and it is plasma membrane-bound NADPH-oxidase-dependent. Sub-cellular localization studies showed that PFLP is present in the cytoplasm and chloroplast of Pflp transgenic tobacco cells, but only in the chloroplast, not in the cytoplasm, of wild-type tobacco cells. It is possible that PFLP can change the redox state of the cell upon harpinpss inoculation to increase AOS generation and hypersensitive cell death. Overall, this study will provide a new insight in the functional properties of ferredoxin in hypersensitive cell death.


Plant Cell Reports | 2008

Cool-night temperature induces spike emergence and affects photosynthetic efficiency and metabolizable carbohydrate and organic acid pools in Phalaenopsis aphrodite

Wen-Huei Chen; Ya-Chen Tseng; Yo-Ching Liu; Chuo-Min Chuo; Pai-Ting Chen; Kai-Meng Tseng; Yi-Chun Yeh; Mang-Jye Ger; Heng-Long Wang

After being acclimated to constant warm (28°C day/28°C night) and cool-night temperature (28°C day/20°C night) regimes in growth chambers for 2 weeks, the two groups of mature Phalaenopsisaphrodite subsp. formosana plants both clearly exhibited a diurnal oscillation of stomatal conductance, net CO2 uptake rate, malate and starch levels, and the phosphoenolpyruvate carboxylase (EC 4.1.1.31) and NAD+-malic enzyme (EC 1.1.1.39) activities. Hence, P. aphrodite is an obligate crassulacean acid metabolism plant. Nevertheless, different night temperature greatly affected both the stomatal conductance and the contribution of ambient and respiratory CO2 to the nocturnal accumulation of malate. However, the amounts of nocturnal accumulated malate and daily deposited starch appeared to have no significant difference between the two groups. These results demonstrate that P. ahrodite is congruent with the characteristics of CAM plants having great flexibility and plasticity in response to changes in environmental conditions. In addition, the formation of reproductive stem, viz. spike, was noticeably inhibited by a constant warm temperature, but induced by a fluctuating warm day and cool night condition. The relationship between the metabolic pool variation and spike induction of Phalaenopsis is also discussed.


Molecular Plant-microbe Interactions | 2002

Constitutive expression of hrap gene in transgenic tobacco plant enhances resistance against virulent bacterial pathogens by induction of a hypersensitive response

Mang-Jye Ger; Cheng-Hsien Chen; Shaw Yhi Hwang; Hsiang En Huang; Appa Rao Podile; Badri Venkata Dayakar; Teng-Yung Feng

Hypersensitive response-assisting protein (HRAP) has been previously reported as an amphipathic plant protein isolated from sweet pepper that intensifies the harpin(Pss)-mediated hypersensitive response (HR). The hrap gene has no appreciable similarity to any other known sequences, and its activity can be rapidly induced by incompatible pathogen infection. To assess the function of the hrap gene in plant disease resistance, the CaMV 35S promoter was used to express sweet pepper hrap in transgenic tobacco. Compared with wild-type tobacco, transgenic tobacco plants exhibit more sensitivity to harpin(Pss) and show resistance to virulent pathogens (Pseudomonas syringae pv. tabaci and Erwinia carotovora subsp. carotovora). This disease resistance of transgenic tobacco does not originate from a constitutive HR, because endogenous level of salicylic acid and hsr203J mRNA showed similarities in transgenic and wildtype tobacco under noninfected conditions. However, following a virulent pathogen infection in hrap transgenic tobacco, hsr203J was rapidly induced and a micro-HR necrosis was visualized by trypan blue staining in the infiltration area. Consequently, we suggest that the disease resistance of transgenic plants may result from the induction of a HR by a virulent pathogen infection.


Plant Cell Reports | 2011

Downregulation of putative UDP-glucose: flavonoid 3-O-glucosyltransferase gene alters flower coloring in Phalaenopsis

Wen-Huei Chen; Chi Yin Hsu; Hao Yun Cheng; Hsiang Chang; Hong Hwa Chen; Mang-Jye Ger

Anthocyanin is the primary pigment contributing to red, violet, and blue flower color formation. The solubility of anthocyanins is enhanced by UDP glucose: flavonoid 3-O-glucosyltransferase (UFGT) through transfer of the glucosyl moiety from UDP-glucose to 3-hydroxyl group to produce the first stable pigments. To assess the possibility that UFGT is involved in the flower color formation in Phalaenopsis, the transcriptional activities of PeUFGT3, and other flower color-related genes in developing red or white flower buds were examined using RT-PCR analysis. In contrast with chalcone synthase, chalcone isomerase, and anthocyanidin synthase genes, PeUFGT3 transcriptional activity was higher expressed in the red color of Phalaenopsis cultivars. In the red labellum of Phalaenopsis ‘Luchia Lady’, PeUFGT3 also showed higher expression levels than that in the white perianth. PeUFGT3 was predominantly expressed in the red region of flower among various Phalaenopsis cultivars. To investigate the role of PeUFGT3 in red flower color formation, PeUFGT3 was specifically knocked down using RNA interference technology via virus inducing gene silencing in Phalaenopsis. The PeUFGT3-suppressed Phalaenopsis exhibited various levels of flower color fading that was well correlated with the extent of reduced level of PeUFGT3 transcriptional activity. Furthermore, there was a significant decrease in anthocyanin content in the PeUFGT3-suppressed Phalaenopsis flowers. The decrease of anthocyanin content due to PeUFGT3 gene silencing possibly caused the faded flower color in PeUFGT3-suppressed Phalaenopsis. Consequently, these results suggested that the glycosylation-related gene PeUFGT3 plays a critical role in red color formation in Phalaenopsis.


Plant Molecular Biology | 2000

cDNA cloning and characterization of a plant protein that may be associated with the harpinPSS-mediated hypersensitive response.

Cheng-Hsien Chen; Hao Jan Lin; Mang-Jye Ger; David T. Chow; Teng-Yung Feng

Hypersensitive response-assisting protein (HRAP) is a novel plant protein that can intensify the harpinPSS-mediated hypersensitive response (HR) in harpinPSS-insensitive plants, such as the vegetative stage of sweet pepper. In this report, we identified a HRAP cDNA clone from sweet pepper (Capsicum annuum cv. ECW). The sequence of this cDNA clone showed no appreciable similarity to any other known sequences. However, it contained three positively charged regions, a typical signal peptide and a cAMP-dependent phosphorylation site. The hrap mRNA accumulated preferentially during the incompatible interaction of sweet pepper leaves with a pathogenic bacterium, Pseudomonas syringae pv. syringae. When the hrap gene transcription level was high, the sweet pepper leaves readily expressed the harpinPSS-mediated HR. The hrap gene transcription level in sweet pepper was also higher during the reproductive stage than during the vegetative stage. The HRAP distribution in an individual plant and different plant species was investigated. We found that all the organs of sweet pepper, except fruit, could express two different forms of HRAP. Moreover, the hrap gene was presented in many plant species including tobacco, Arabidopsis, and rice. In conclusion, our results suggest that the hrap gene is widely distributed throughout the plant world and its transcription level correlates with plant sensitivity to harpinPSS. The interaction between HRAP and harpinPSS reveals a novel way to interpret the interaction mechanism between plants and bacterial pathogens.


Phytopathology | 2007

Resistance Enhancement of Transgenic Tomato to Bacterial Pathogens by the Heterologous Expression of Sweet Pepper Ferredoxin-I Protein

Hsiang-En Huang; Chien-An Liu; Mei-Jiuan Lee; C. George Kuo; Huei-Mei Chen; Mang-Jye Ger; Yu-Chih Tsai; Yen-Ru Chen; Ming-Kun Lin; Teng-Yung Feng

ABSTRACT Expression of a foreign gene to enhance plant disease resistance to bacterial pathogens is a favorable strategy. It has been demonstrated that expressing sweet pepper ferredoxin-I protein (PFLP) in transgenic plants can enhance disease resistance to bacterial pathogens that infect leaf tissue. In this study, PFLP was applied to protect tomato (Lycopersicon esculentum cv. cherry Cln1558a) from the root-infecting pathogen, Ralstonia solanacearum. Independent R. solanacearum resistant T(1) lines were selected and bred to produce homozygous T(2) generations. Selected T(2) transgenic lines 24-18-7 and 26-2-1a, which showed high expression levels of PFLP in root tissue, were resistant to disease caused by R. solanacearum. In contrast, the transgenic line 23-17-1b and nontransgenic tomato, which showed low expression levels of PFLP in root tissue, were not resistant to R. solanacearum infection. The expansion of R. solanacearum populations in stem tissue of transgenic tomato line 24-18-7 was limited compared with the nontransgenic tomato Cln1558a. Using a detached leaf assay, transgenic line 24-18-7 was also resistant to maceration caused by E. carotovora subsp. carotovora; however, resistance to E. carotovora subsp. carotovora was less apparent in transgenic lines 26-2-1a and 23-17-1b. These results demonstrate that PFLP is able to enhance disease resistance at different levels to bacterial pathogens in individual tissue of transgenic tomato.


Plant Molecular Biology | 2005

Expression of the hypersensitive response-assisting protein in Arabidopsis results in harpin-dependent hypersensitive cell death in response to Erwinia carotovora

Ajay-Kumar Pandey; Mang-Jye Ger; Hsiang-En Huang; Mei-Kuen Yip; Jiqing Zeng; Teng-Yung Feng

Active defense mechanisms of plants against pathogens often include a rapid plant cell death known as the hypersensitive cell death (HCD). Hypersensitive response-assisting protein (HRAP) isolated from sweet pepper intensifies the harpinPss-mediated HCD. Here we demonstrate that constitutive expression of the hrap gene in Arabidopsis results in an enhanced disease resistance towards soft rot pathogen, E. carotovora subsp. carotovora. This resistance was due to the induction of HCD since different HCD markers viz. Athsr3, Athsr4, ion leakage, H2O2 and protein kinase were induced. One of the elicitor harpin proteins, HrpN, from Erwinia carotovora subsp. carotovora was able to induce a stronger HCD in hrap-Arabidopsis than non-transgenic controls. To elucidate the role of HrpN, we used E. carotovora subsp. carotovora defective in HrpN production. The hrpN− mutant did not induce disease resistance or HCD markers in hrap-Arabidopsis. These results imply that the disease resistance of hrap-Arabidopsis against a virulent pathogen is harpin dependent.


Molecular Plant Pathology | 2007

Disease resistance to bacterial pathogens affected by the amount of ferredoxin-I protein in plants.

Hsiang-En Huang; Mang-Jye Ger; Chao-Ying Chen; Ajay-Kumar Pandey; Mei-Kuen Yip; Hung-Wen Chou; Teng-Yung Feng

SUMMARY Ferredoxin-I (Fd-I) is a fundamental protein that is involved in several metabolic pathways. The amount of Fd-I found in plants is generally regulated by environmental stress, including biotic and abiotic events. In this study, the correlation between quantity of Fd-I and plant disease resistance was investigated. Fd-I levels were increased by inoculation with Pseudomonas syringae pv. syringae but were reduced by Erwinia carotovora ssp. carotovora. Transgenic tobacco over-expressing Fd-I with the sense sweet pepper Fd-I gene (pflp) was resistant to E. carotovora ssp. carotovora and the saprophytic bacterium P. fluorescens. By contrast, transgenic tobacco with reduced total Fd-I and the antisense pflp gene was susceptible to E. carotovora ssp. carotovora and P. fluorescens. Both of these transgenic tobaccos were resistant to P. syringae pv. syringae. By contrast, the mutated E. carotovora ssp. carotovora, with a defective harpin protein, was able to invade the sense-pflp transgenic tobacco as well as the non-transgenic tobacco. An in vitro kinase assay revealed that harpin could activate unidentified kinases to phosphorylate PFLP. These results demonstrate that Fd-I plays an important role in the disease defence mechanism.


Plant Science | 2010

Plant ferredoxin-like protein (PFLP) outside chloroplast in Arabidopsis enhances disease resistance against bacterial pathogens.

Yi-Hsien Lin; Hsiang-En Huang; Fang-Sheng Wu; Mang-Jye Ger; Pei-Luan Liao; Yen-Ru Chen; Kuo-Ching Tzeng; Teng-Yung Feng

Protection of crops against bacterial disease is an important issue in agricultural production. One of the strategies to lead plants become resistant against bacterial pathogens is employing a transgene, like plant ferredoxin-like protein (PFLP). PFLP is a photosynthetic type ferredoxin isolated from sweet pepper and contains a signal peptide for targeting towards chloroplasts. Our previous reports indicated that transgenic plants with this protein are more resistant against bacterial pathogens. However, this heterologous protein was visualized not only inside the chloroplasts, but also in the cytoplasm. In this article, we moved to study its heterologous expression in Arabidopsis by expressing the protein in chloroplast, apoplast and cytoplasm. This work was achieved by engineering a chloroplast target (CPF), an apoplast target (ESF), and cytoplasm target (DF) plants. The expression and subcellular localization of PFLP were analyzed by Western blot and immuno-staining by confocal microscopy, respectively. We tested the ability of the transgenic Arabidopsis for resistance to two Ralstonia solanacearum strains and their ability to increase the hypersensitive response (HR) triggered by harpin (HrpZ) from Pseudomonas syringae. The DF and ESF plants conferred resistance against bacterial wilt strains and increased HR by harpin, but no resistance found in the CPF plants. In addition, we determined the level of reduced ascorbate in all transgenic plants and further analyzed the expression of two NADPH-oxidase genes (AtrbohD and AtrbohF) in ESF plant. Among the transgenic Arabidopsis plants, ESF plants confer the highest resistance to bacterial pathogens and followed by DF plants. We concluded that PFLP enhances disease resistance in Arabidopsis when expressed in the apoplast or in cytoplasm but not when targeted into the chloroplast. This study provides a strategy for molecular breeding to improve resistance of crops against bacterial pathogens.


Journal of Plant Physiology | 2011

Ectopic ferredoxin I protein promotes root hair growth through induction of reactive oxygen species in Arabidopsis thaliana.

Lung-Jiun Shin; Hsiang-En Huang; Hsiang Chang; Yi-Hsien Lin; Teng-Yung Feng; Mang-Jye Ger

Ferredoxin I (Fd-1) is a protein existing in green tissues as an electron carrier for photosynthesis. Reactive oxygen species (ROS) are generated from an over-accumulation of electrons in photosynthetic electron chains. In previous studies, plant ferredoxin-like protein (PFLP) transgenic plants could be made resistant to virulent pathogens, by inducing the generation of ROS. The generation of ROS is closely associated with root hair development, increasing with the elongation of root hairs. We propose that an ectopic expression of pflp may alter root hair development through the enhanced generation of ROS. In this report, Arabidopsis transformed with pflp was generated to determine the potential role of PFLP in root development. Transgenic Arabidopsis exhibited longer root hairs with a significant increase in endogenous H(2)O(2) compared with wild type. The growth of transgenic lines in root hairs was inhibited when treated with NADPH oxidase inhibitor. Results suggest that an over-expression of pflp had enhanced the accumulation of H(2)O(2) in the roots and further promoted the growth of root hairs. Transcriptional activities of root hair development-related and redox-regulated genes were mediated through increased levels of ROS, to alter the growth of transgenic lines in root hairs. In summary, we propose that an ectopic expression of pflp promotes root hair growth, resulting from an enhancement of ROS production.

Collaboration


Dive into the Mang-Jye Ger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao-Ying Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge