Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mangala Rao is active.

Publication


Featured researches published by Mangala Rao.


The New England Journal of Medicine | 2012

Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial

Barton F. Haynes; Peter B. Gilbert; M. Juliana McElrath; Susan Zolla-Pazner; Georgia D. Tomaras; S. Munir Alam; David T. Evans; David C. Montefiori; Chitraporn Karnasuta; Ruengpueng Sutthent; Hua-Xin Liao; Anthony L. DeVico; George K. Lewis; Constance Williams; Abraham Pinter; Youyi Fong; Holly Janes; Allan C. deCamp; Yunda Huang; Mangala Rao; Erik Billings; Nicos Karasavvas; Merlin L. Robb; Viseth Ngauy; Mark S. de Souza; Robert Paris; Guido Ferrari; Robert T. Bailer; Kelly A. Soderberg; Charla Andrews

BACKGROUND In the RV144 trial, the estimated efficacy of a vaccine regimen against human immunodeficiency virus type 1 (HIV-1) was 31.2%. We performed a case-control analysis to identify antibody and cellular immune correlates of infection risk. METHODS In pilot studies conducted with RV144 blood samples, 17 antibody or cellular assays met prespecified criteria, of which 6 were chosen for primary analysis to determine the roles of T-cell, IgG antibody, and IgA antibody responses in the modulation of infection risk. Assays were performed on samples from 41 vaccinees who became infected and 205 uninfected vaccinees, obtained 2 weeks after final immunization, to evaluate whether immune-response variables predicted HIV-1 infection through 42 months of follow-up. RESULTS Of six primary variables, two correlated significantly with infection risk: the binding of IgG antibodies to variable regions 1 and 2 (V1V2) of HIV-1 envelope proteins (Env) correlated inversely with the rate of HIV-1 infection (estimated odds ratio, 0.57 per 1-SD increase; P=0.02; q=0.08), and the binding of plasma IgA antibodies to Env correlated directly with the rate of infection (estimated odds ratio, 1.54 per 1-SD increase; P=0.03; q=0.08). Neither low levels of V1V2 antibodies nor high levels of Env-specific IgA antibodies were associated with higher rates of infection than were found in the placebo group. Secondary analyses suggested that Env-specific IgA antibodies may mitigate the effects of potentially protective antibodies. CONCLUSIONS This immune-correlates study generated the hypotheses that V1V2 antibodies may have contributed to protection against HIV-1 infection, whereas high levels of Env-specific IgA antibodies may have mitigated the effects of protective antibodies. Vaccines that are designed to induce higher levels of V1V2 antibodies and lower levels of Env-specific IgA antibodies than are induced by the RV144 vaccine may have improved efficacy against HIV-1 infection.


Nature | 2012

Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys

Dan H. Barouch; Jinyan Liu; Hualin Li; Lori F. Maxfield; Peter Abbink; Diana M. Lynch; M. Justin Iampietro; Adam SanMiguel; Michael S. Seaman; Guido Ferrari; Donald N. Forthal; Ilnour Ourmanov; Vanessa M. Hirsch; Angela Carville; Keith G. Mansfield; Donald Stablein; Maria G. Pau; Hanneke Schuitemaker; Jerald C. Sadoff; Erik Billings; Mangala Rao; Merlin L. Robb; Jerome H. Kim; Mary Marovich; Jaap Goudsmit; Nelson L. Michael

Preclinical studies of human immunodeficiency virus type 1 (HIV-1) vaccine candidates have typically shown post-infection virological control, but protection against acquisition of infection has previously only been reported against neutralization-sensitive virus challenges. Here we demonstrate vaccine protection against acquisition of fully heterologous, neutralization-resistant simian immunodeficiency virus (SIV) challenges in rhesus monkeys. Adenovirus/poxvirus and adenovirus/adenovirus-vector-based vaccines expressing SIVSME543 Gag, Pol and Env antigens resulted in an 80% or greater reduction in the per-exposure probability of infection against repetitive, intrarectal SIVMAC251 challenges in rhesus monkeys. Protection against acquisition of infection showed distinct immunological correlates compared with post-infection virological control and required the inclusion of Env in the vaccine regimen. These data demonstrate the proof-of-concept that optimized HIV-1 vaccine candidates can block acquisition of stringent, heterologous, neutralization-resistant virus challenges in rhesus monkeys.


Nature | 1998

Skin immunization made possible by cholera toxin.

Gregory M. Glenn; Mangala Rao; Gary R. Matyas; Carl R. Alving

Immunization using an application to the skin surface, without physical penetration by needles, would greatly increase the ease of vaccination. In orally and nasally administered vaccines, the bacterial product cholera toxin (CT) is commonly used to enhance the immune response. We found that when CT was applied to the surface of the skin, it stimulated an immune response to vaccine components such as diphtheria or tetanus toxoids. Immunization can thus be achieved by the simple application of a mixture of CT and vaccine components without penetration or disruption of the skin.


Cell | 2013

Protective Efficacy of a Global HIV-1 Mosaic Vaccine against Heterologous SHIV Challenges in Rhesus Monkeys

Dan H. Barouch; Kathryn E. Stephenson; Erica N. Borducchi; Kaitlin M. Smith; Kelly Stanley; Anna McNally; Jinyan Liu; Peter Abbink; Lori F. Maxfield; Michael S. Seaman; Anne-Sophie Dugast; Galit Alter; Melissa Ferguson; Wenjun Li; Patricia L. Earl; Bernard Moss; Elena E. Giorgi; James Szinger; Leigh Anne Eller; Erik Billings; Mangala Rao; Sodsai Tovanabutra; Eric Sanders-Buell; Mo Weijtens; Maria G. Pau; Hanneke Schuitemaker; Merlin L. Robb; Jerome H. Kim; Bette T. Korber; Nelson L. Michael

The global diversity of HIV-1 represents a critical challenge facing HIV-1 vaccine development. HIV-1 mosaic antigens are bioinformatically optimized immunogens designed for improved coverage of HIV-1 diversity. However, the protective efficacy of such global HIV-1 vaccine antigens has not previously been evaluated. Here, we demonstrate the capacity of bivalent HIV-1 mosaic antigens to protect rhesus monkeys against acquisition of infection following heterologous challenges with the difficult-to-neutralize simian-human immunodeficiency virus SHIV-SF162P3. Adenovirus/poxvirus and adenovirus/adenovirus vector-based vaccines expressing HIV-1 mosaic Env, Gag, and Pol afforded a significant reduction in the per-exposure acquisition risk following repetitive, intrarectal SHIV-SF162P3 challenges. Protection against acquisition of infection correlated with vaccine-elicited binding, neutralizing, and functional nonneutralizing antibodies, suggesting that the coordinated activity of multiple antibody functions may contribute to protection against difficult-to-neutralize viruses. These data demonstrate the protective efficacy of HIV-1 mosaic antigens and suggest a potential strategy for the development of a global HIV-1 vaccine. PAPERCLIP:


AIDS Research and Human Retroviruses | 2012

The Thai Phase III HIV Type 1 Vaccine Trial (RV144) Regimen Induces Antibodies That Target Conserved Regions Within the V2 Loop of gp120

Nicos Karasavvas; Erik Billings; Mangala Rao; Constance Williams; Susan Zolla-Pazner; Robert T. Bailer; Richard A. Koup; Sirinan Madnote; Duangnapa Arworn; Xiaoying Shen; Georgia D. Tomaras; Jeffrey R. Currier; Mike Jiang; Craig A. Magaret; Charla Andrews; Raphael Gottardo; Peter B. Gilbert; Timothy Cardozo; Supachai Rerks-Ngarm; Sorachai Nitayaphan; Punnee Pitisuttithum; Jaranit Kaewkungwal; Robert Paris; Kelli M. Greene; Hongmei Gao; Sanjay Gurunathan; Jim Tartaglia; Faruk Sinangil; Bette T. Korber; David C. Montefiori

The Thai Phase III clinical trial (RV144) showed modest efficacy in preventing HIV-1 acquisition. Plasma collected from HIV-1-uninfected trial participants completing all injections with ALVAC-HIV (vCP1521) prime and AIDSVAX B/E boost were tested for antibody responses against HIV-1 gp120 envelope (Env). Peptide microarray analysis from six HIV-1 subtypes and group M consensus showed that vaccination induced antibody responses to the second variable (V2) loop of gp120 of multiple subtypes. We further evaluated V2 responses by ELISA and surface plasmon resonance using cyclic (Cyc) and linear V2 loop peptides. Thirty-one of 32 vaccine recipients tested (97%) had antibody responses against Cyc V2 at 2 weeks postimmunization with a reciprocal geometric mean titer (GMT) of 1100 (range: 200-3200). The frequency of detecting plasma V2 antibodies declined to 19% at 28 weeks post-last injection (GMT: 110, range: 100-200). Antibody responses targeted the mid-region of the V2 loop that contains conserved epitopes and has the amino acid sequence KQKVHALFYKLDIVPI (HXB2 Numbering sequence 169-184). Valine at position 172 was critical for antibody binding. The frequency of V3 responses at 2 weeks postimmunization was modest (18/32, 56%) with a GMT of 185 (range: 100-800). In contrast, naturally infected HIV-1 individuals had a lower frequency of antibody responses to V2 (10/20, 50%; p=0.003) and a higher frequency of responses to V3 (19/20, 95%), with GMTs of 400 (range: 100-3200) and 3570 (range: 200-12,800), respectively. RV144 vaccination induced antibodies that targeted a region of the V2 loop that contains conserved epitopes. Early HIV-1 transmission events involve V2 loop interactions, raising the possibility that anti-V2 antibodies in RV144 may have contributed to viral inhibition.


Current Opinion in Immunology | 2012

Adjuvants for human vaccines

Carl R. Alving; Kristina K. Peachman; Mangala Rao; Steven G. Reed

Rational selection of individual adjuvants can often be made on the basis of innate molecular interactions of the foreign molecules with pattern recognition receptors such as Toll-like receptors. For example, monophosphoryl lipid A, a family of endotoxic TLR4 agonist molecules from bacteria, has recently been formulated with liposomes, oil emulsions, or aluminum salts for several vaccines. Combinations of antigens and adjuvants with particulate lipid or oil components may reveal unique properties of immune potency or efficacy, but these can sometimes be exhibited differently in rodents when compared to nonhuman primates or humans. New adjuvants, formulations, microinjection devices, and skin delivery techniques for transcutaneous immunization demonstrate that adjuvant systems can include combinations of strategies and delivery mechanisms for uniquely formulated antigens and adjuvants.


PLOS ONE | 2013

Analysis of V2 antibody responses induced in vaccinees in the ALVAC/AIDSVAX HIV-1 vaccine efficacy trial.

Susan Zolla-Pazner; Allan C. deCamp; Timothy Cardozo; Nicos Karasavvas; Raphael Gottardo; Constance Williams; Daryl Morris; Georgia D. Tomaras; Mangala Rao; Erik Billings; Phillip W. Berman; Xiaoying Shen; Charla Andrews; Robert J. O'Connell; Viseth Ngauy; Sorachai Nitayaphan; Mark S. de Souza; Bette T. Korber; Richard A. Koup; Robert T. Bailer; John R. Mascola; Abraham Pinter; David C. Montefiori; Barton F. Haynes; Merlin L. Robb; Supachai Rerks-Ngarm; Nelson L. Michael; Peter B. Gilbert; Jerome H. Kim

The RV144 clinical trial of a prime/boost immunizing regimen using recombinant canary pox (ALVAC-HIV) and two gp120 proteins (AIDSVAX B and E) was previously shown to have a 31.2% efficacy rate. Plasma specimens from vaccine and placebo recipients were used in an extensive set of assays to identify correlates of HIV-1 infection risk. Of six primary variables that were studied, only one displayed a significant inverse correlation with risk of infection: the antibody (Ab) response to a fusion protein containing the V1 and V2 regions of gp120 (gp70-V1V2). This finding prompted a thorough examination of the results generated with the complete panel of 13 assays measuring various V2 Abs in the stored plasma used in the initial pilot studies and those used in the subsequent case-control study. The studies revealed that the ALVAC-HIV/AIDSVAX vaccine induced V2-specific Abs that cross-react with multiple HIV-1 subgroups and recognize both conformational and linear epitopes. The conformational epitope was present on gp70-V1V2, while the predominant linear V2 epitope mapped to residues 165–178, immediately N-terminal to the putative α4β7 binding motif in the mid-loop region of V2. Odds ratios (ORs) were calculated to compare the risk of infection with data from 12 V2 assays, and in 11 of these, the ORs were ≤1, reaching statistical significance for two of the variables: Ab responses to gp70-V1V2 and to overlapping V2 linear peptides. It remains to be determined whether anti-V2 Ab responses were directly responsible for the reduced infection rate in RV144 and whether anti-V2 Abs will prove to be important with other candidate HIV vaccines that show efficacy, however, the results support continued dissection of Ab responses to the V2 region which may illuminate mechanisms of protection from HIV-1 infection and may facilitate the development of an effective HIV-1 vaccine.


Methods | 2003

Immunization with DNA through the skin

Kristina K. Peachman; Mangala Rao; Carl R. Alving

The skin has evolved as a barrier to prevent external agents, including pathogens, from entering the body. It has a complex and efficient immune surveillance system, which includes Langerhans cells and dendritic cells. By targeting the bodys natural defense system, skin-DNA immunization attempts to produce an efficient immune response. Nucleic acid vaccines provide DNA for protein expression in a variety of cells, including keratinocytes, Langerhans cells, and dendritic cells, which are located in the two main areas of the skin, the epidermis (the most superficial layer) and the dermis. After maturation, Langerhans cells and dermal dendritic cells can migrate to local lymph nodes where presentation of antigens to T cells can occur and thus start a variety of immunologic responses. Dermal immunization methods described in this article target the epidermis, the dermis, or both and include: (a) stripping; (b) chemical modification; (c) trans-epidermal immunization (transcutaneous immunization or non-invasive vaccination of the skin); (d) gene gun technology; (e) electroporation; (f) intradermal injections; and (g) microseeding. These techniques all require the removal of hair, the circumvention or modification of the stratum corneum layer of the epidermis, and the addition of DNA or amplification of DNA signal. As the biology of the skin and the mechanisms of DNA vaccination are elucidated, these skin immunization techniques will be optimized. With refinement, skin-DNA immunization will achieve the goal of producing a reliable and efficacious immune response to a variety of pathogens.


Journal of Virology | 2013

Antibodies with High Avidity to the gp120 Envelope Protein in Protection from Simian Immunodeficiency Virus SIVmac251 Acquisition in an Immunization Regimen That Mimics the RV-144 Thai Trial

Poonam Pegu; Monica Vaccari; Shari N. Gordon; Brandon F. Keele; Melvin N. Doster; Yongjun Guan; Guido Ferrari; Ranajit Pal; Maria Grazia Ferrari; Stephen Whitney; Lauren Hudacik; Erik Billings; Mangala Rao; David C. Montefiori; Georgia D. Tomaras; S. Munir Alam; Claudio Fenizia; Jeffrey D. Lifson; Donald Stablein; Jim Tartaglia; Nelson L. Michael; Jerome H. Kim; David Venzon; Genoveffa Franchini

ABSTRACT The recombinant canarypox vector, ALVAC-HIV, together with human immunodeficiency virus (HIV) gp120 envelope glycoprotein, has protected 31.2% of Thai individuals from HIV acquisition in the RV144 HIV vaccine trial. This outcome was unexpected, given the limited ability of the vaccine components to induce CD8+ T-cell responses or broadly neutralizing antibodies. We vaccinated macaques with an immunization regimen intended to mimic the RV144 trial and exposed them intrarectally to a dose of the simian immunodeficiency virus SIVmac251 that transmits few virus variants, similar to HIV transmission to humans. Vaccination induced anti-envelope antibodies in all vaccinees and CD4+ and CD8+ T-cell responses. Three of the 11 macaques vaccinated with ALVAC-SIV/gp120 were protected from SIVmac251 acquisition, but the result was not significant. The remaining vaccinees were infected and progressed to disease. The magnitudes of vaccine-induced SIVmac251-specific T-cell responses and binding antibodies were not significantly different between protected and infected animals. However, sera from protected animals had higher avidity antibodies to gp120, recognized the variable envelope regions V1/V2, and reduced SIVmac251 infectivity in cells that express high levels of α4β7 integrins, suggesting a functional role of antibodies to V2. The current results emphasize the utility of determining the titer of repeated mucosal challenge in the preclinical evaluation of HIV vaccines.


Journal of Virology | 2002

Induction of Immune Responses in Mice and Monkeys to Ebola Virus after Immunization with Liposome-Encapsulated Irradiated Ebola Virus: Protection in Mice Requires CD4+ T Cells

Mangala Rao; Mike Bray; Carl R. Alving; Peter B. Jahrling; Gary R. Matyas

ABSTRACT Ebola Zaire virus (EBO-Z) causes severe hemorrhagic fever in humans, with a high mortality rate. It is thought that a vaccine against EBO-Z may have to induce both humoral and cell-mediated immune responses to successfully confer protection. Because it is known that liposome-encapsulated antigens induce both antibody and cellular responses, we evaluated the protective efficacy of liposome-encapsulated irradiated EBO-Z [L(EV)], which contains all of the native EBO-Z proteins. In a series of experiments, mice immunized intravenously with L(EV) were completely protected (94/94 mice) against illness and death when they were challenged with a uniformly lethal mouse-adapted variant of EBO-Z. In contrast, only 55% of mice immunized intravenously with nonencapsulated irradiated virus (EV) survived challenge, and all became ill. Treatment with anti-CD4 antibodies before or during immunization with L(EV) eliminated protection, while treatment with anti-CD8 antibodies had no effect, thus indicating a requirement for CD4+ T lymphocytes for successful immunization. On the other hand, treatment with either anti-CD4 or anti-CD8 antibodies after immunization did not abolish the protection. After immunization with L(EV), antigen-specific gamma interferon (IFNγ)-secreting CD4+ T lymphocytes were induced as analyzed by enzyme-linked immunospot assay. Anti-CD4 monoclonal antibody treatment abolished IFNγ production (80 to 90% inhibition compared to that for untreated mice). Mice immunized with L(EV), but not EV, developed cytotoxic T lymphocytes specific to two peptides (amino acids [aa] 161 to 169 and aa 231 to 239) present in the amino-terminal end of the EBO-Z surface glycoprotein. Because of the highly successful results in the mouse model, L(EV) was also tested in three cynomolgus monkeys. Although immunization of the monkeys with L(EV)-induced virus-neutralizing antibodies against EBO-Z caused a slight delay in the onset of illness, it did not prevent death.

Collaboration


Dive into the Mangala Rao's collaboration.

Top Co-Authors

Avatar

Carl R. Alving

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Kristina K. Peachman

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Gary R. Matyas

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Nelson L. Michael

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Venigalla B. Rao

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Erik Billings

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victoria R. Polonis

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Jerome H. Kim

Tripler Army Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge