Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mangesh R. Bhalekar is active.

Publication


Featured researches published by Mangesh R. Bhalekar.


Aaps Pharmscitech | 2009

Formulation Design and Optimization of Novel Taste Masked Mouth-Dissolving Tablets of Tramadol Having Adequate Mechanical Strength

Ashwini R. Madgulkar; Mangesh R. Bhalekar; Rahul R. Padalkar

The purpose of this work was to develop novel taste masked mouth-dissolving tablets of tramadol that overcomes principle drawback of such formulation which is inadequate mechanical strength. Tramadol is an opioid analgesic used for the treatment of moderate to severe pain. Mouth-dissolving tablets offer substantial advantages like rapid onset of action, beneficial for patients having difficulties in swallowing and in conditions where access to water is difficult. The crucial aspect in the formulation of mouth-dissolving tablets is to mask the bitter taste and to minimize the disintegration time while maintaining a good mechanical strength of the tablet. Mouth-dissolving tablets of tramadol are not yet reported in the literature because of its extreme bitter taste. In this work, the bitter taste of Tramadol HCl was masked by forming a complex with an ion exchange resin Tulsion335. The novel combination of a superdisintegrant and a binder that melts near the body temperature was used to formulate mechanically strong tablets that showed fast disintegration. A 32 full factorial design and statistical models were applied to optimize the effect of two factors, i.e., superdisintegrant (crospovidone) and a mouth-melting binder (Gelucire 39/01). It was observed that the responses, i.e., disintegration time and percent friability were affected by both the factors. The statistical models were validated and can be successfully used to prepare optimized taste masked mouth-dissolving tablets of Tramadol HCl with adequate mechanical strength and rapid disintegration.


Carbohydrate Polymers | 2016

Synthesis and characterization of a novel mucoadhesive derivative of xyloglucan

Ashwini R. Madgulkar; Mangesh R. Bhalekar; Kalyani D. Asgaonkar; Amrita A. Dikpati

A novel polymer in the form of a thiolated derivative of natural tamarind seed polysaccharide or xyloglucan was synthesized and its chacteristics as a mucoadhesive polymer were studied as a part of the study undertaken herein. The synthetic route followed involves a two-step reaction mechanism of firstly oxidizing xyloglucan and then further conjugating it with l-cysteine to form thiolated xyloglucan or thiomer via imine linkage. The thiomer thus formed was characterized using various analytical techniques as differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), and nuclear magnetic resonance (NMR). Ellmans method was used to determine the numbers of thiol groups/g of thiolated xyloglucan. Zeta potential measurements were carried out for thiolated xyloglucan. Viscosities of the formulated xyloglucan and thiolated xyloglucan gels were comparatively evaluated along with the evaluation of mucoadhesive properties of the gels using ex vivo bioadhesion study employing freshly excised sheep intestinal mucosa.


Pharmaceutical Development and Technology | 2012

Preparation and characterization of nanocapsules for colon-targeted drug delivery system

Sanjay Kshirsagar; Mangesh R. Bhalekar; Jiten N. Patel; Santosh K. Mohapatra; Nitin S. Shewale

Context: Nanoparticles for colon-specific drug delivery system are known for their specific accumulation in the inflamed tissue in the colon and may therefore allow a selective delivery to the site of inflammation for the treatment of inflammatory bowel disease (IBD). Objective: The objective of this study was to formulate and evaluate nanocapsules (NC), an oral system designed to achieve site-specific and instant drug release in colon for effective treatment of IBD. Materials and methods: Prednisolone (PD), a typical glucocorticoid, has been widely used for the treatment of IBD. In this study, nanoprecipitation method was used to prepare polymeric NC of PD with pH responsive polymer Eudragit S100. The effect of several formulation variables such as surfactant, oil, and polymer on the PD-NC properties (average size, drug release rate, and drug entrapment) was investigated. In vitro drug release study was done by changing pH method and an in vivo study on rat was done to ascertain efficiency of PD-NC to release drug specifically in colon. Results and discussion: The optimized formulations lead to the preparation of PD-NC with a mean size of 567.87 nm, high encapsulation efficiency of 90.21%. In vitro studies reveal that NC releases the drug after 4.5-h lag time corresponding to time to reach colonic region, and in vivo studies show that NC release drug after 3-h lag time in rat corresponds to arrival in colon. Conclusion: The above NC formulation of PD is the targeted drug to the colon and may provide effective way of treatment of colonic disease.


International journal of pharmaceutical investigation | 2011

Statistical optimization of floating pulsatile drug delivery system for chronotherapy of hypertension

Sanjay Kshirsagar; Shrikant V Patil; Mangesh R. Bhalekar

Introduction: A pulsatile drug delivery system is characterized by a lag time that is an interval of no drug release followed by rapid drug release. The purpose of this work was to develop hollow calcium alginate beads for floating pulsatile release of valsartan intended for chronopharmacotherapy. Floating pulsatile concept was applied to increase the gastric residence of the dosage form having lag phase followed by a burst release. Materials and Methods: To overcome the limitations of various approaches for imparting buoyancy, hollow/porous beads were prepared by simple process of acid-base reaction during ionotropic crosslinking by low viscosity sodium alginate and calcium chloride as a crosslinking agent. In this study, investigation of the functionality of the sodium alginate to predict lag time and drug release was statistically analyzed using the response surface methodology (RSM). RSM was employed for designing of the experiment, generation of mathematical models and optimization study. The chosen independent variables, i.e. sodium alginate and potassium bicarbonate were optimized with a 32 full factorial design. Floating time and cumulative percentage drug release in 6 h were selected as responses. Results: Results revealed that both the independent variables are significant factors affecting drug release profile. A second-order polynomial equation fitted to the data was used to predict the responses in the optimal region. The optimized formulation prepared according to computer-determined levels provided a release profile, which was close to the predicted values. The floating beads obtained were porous (21-28% porosity), hollow with bulk density <1 and had Ft70 of 2–11 h. The floating beads provided expected two-phase release pattern with initial lag time during floating in acidic medium followed by rapid pulse release in phosphate buffer. Conclusion: The proposed mathematical model is found to be robust and accurate for optimization of time-lagged formulations for programmable pulsatile release of valsartan.


Drug Development and Industrial Pharmacy | 2012

Development and evaluation of carvedilol-loaded transdermal drug delivery system: In-vitro and in-vivo characterization study

Sanjay Kshirsagar; Mangesh R. Bhalekar; Santosh K. Mohapatra

Context: The transdermal drug delivery system was prepared and the bioavailability of the selected drug was enhanced by reducing first-pass metabolism. Objective: The objective of this study was to enhance the bioavailability of carvedilol through transdermal patches. Materials and methods: To develop a matrix-type transdermal patch containing carvedilol with different ratios of polymer combinations by solvent evaporation technique. Results and discussion: In-vitro permeation studies were performed by Franz diffusion cells. The results followed Higuchi kinetics, and mechanism of release was diffusion mediated. On the basis of the in-vitro and physicochemical parameters of carvedilol patches, the code F-1(PVP: Ethyl Cellulose = 4:1) was chosen for the study of in-vivo, ex-vivo, histocompatibility study, and pharmacological study. The bioavailability studies in rats indicated that the carvedilol-loaded transdermal patches provided steady-state plasma concentration and improved bioavailability of 72% in comparison to oral administration. The ex-vivo permeation study in rat’s skin indicated that the flux and permeability co-efficient of optimized F-1 patch was 30.08 ± 0.7 μg/cm2/h and 0.416 ± 0.05 μg/cm2/h, respectively, which was more as compared to plain carvedilol. The histocompatibility study of the F-1 patch on the rat’s skin after 24 h ex-vivo study gave less pathological changes as compared to other. The antihypertensive activity of the patch in comparison with oral administration was studied using N-nitro-L-arginine methyl ester-induced hypertensive rats. It was observed that the optimized patch (F-1) significantly controlled hypertension (p < 0.05). Conclusion: The developed patch increases the efficacy of carvedilol through enhancement of bioavailability for the therapy of hypertension.


Brazilian Journal of Pharmaceutical Sciences | 2011

Statistical optimization of dithranol-loaded solid lipid nanoparticles using factorial design

Makarand Suresh Gambhire; Mangesh R. Bhalekar; Vaishali Makarand Gambhire

This study describes a 32 full factorial experimental design to optimize the formulation of dithranol (DTH) loaded solid lipid nanoparticles (SLN) by the pre-emulsion ultrasonication method. The variables drug: lipid ratio and sonication time were studied at three levels and arranged in a 32 factorial design to study the influence on the response variables particle size and % entrapment efficiency (%EE). From the statistical analysis of data polynomial equations were generated. The particle size and %EE for the 9 batches (R1 to R9) showed a wide variation of 219-348 nm and 51.33- 71.80 %, respectively. The physical characteristics of DTH-loaded SLN were evaluated using a particle size analyzer, differential scanning calorimetry and X-ray diffraction. The results of the optimized formulation showed an average particle size of 219 nm and entrapment efficiency of 69.88 %. Ex-vivo drug penetration using rat skin showed about a 2-fold increase in localization of DTH in skin as compared to the marketed preparation of DTH.


Brazilian Journal of Pharmaceutical Sciences | 2013

Synthesis and characterization of a cysteine xyloglucan conjugate as mucoadhesive polymer

Mangesh R. Bhalekar; Savita Sonawane; Shamkant Shimpi

The aim of this study was to improve the mucoadhesive potential of xyloglucan polymer by the covalent attachment of cysteine as thiol moiety. The parent polymer xyloglucan was chemically modified by introducing sulphydryl bearing compound L-cysteine HCl. Different batches of xyloglucan-cysteine conjugates were prepared at varying reaction pH (2-6) and evaluated for optimum thiol incorporation, disulphide group content, swelling behavior, rheological properties and mucoadhesive properties. The obtained conjugates characterized in vitro by quantification of immobilized thiol groups; showed maximum thiol incorporation on xyloglucan (7.67 ± 0.14 %) at pH 5. The disulphide group content was found maximum (2.83 ± 0.12) at pH 6. The water uptake at end of 4 h was 5.0 for xyloglucan and was found to decrease in thiolated derivatives with increase in thiolation. Mucoadhesion studies revealed that mucoadhesion of xyloglucan-cysteine conjugate increased more than twice compared to the unmodified polymer. The viscosity of thiomer was more than that of xyloglucan because of formation of disulphide bonds.


European Journal of Pharmaceutical Sciences | 2016

Fabrication and efficacy evaluation of chloroquine nanoparticles in CFA-induced arthritic rats using TNF-α ELISA.

Mangesh R. Bhalekar; Prashant G. Upadhaya; Ashwini R. Madgulkar

Rheumatoid arthritis (RA), a chronic systemic autoimmune disease, stimulates various immune cells especially macrophages, causing release of various proinflammatory cytokines such as TNF-α leading to persistent synovitis. Chloroquine, an anti-malarial drug inhibits the production of TNF-α, thus, halting the disease progression. The aim of the present study was fabrication, characterization and demonstration of kinetic and dynamic efficacy of chloroquine loaded solid lipid nanoparticles (CQ-SLNs) in arthritic rats and in lowering TNF-α levels. CQ-SLNs were prepared using melt homogenization method and subjected to lyophilization. The particle size, zeta potential, PDI and entrapment efficiency were found to be 113.6±0.15nm, -27.8±1.21mV, 0.125±0.03 and 93.45±0.43% respectively. Ex vivo endocytic uptake studies revealed engrossment of endocytic pathways in the uptake of SLN from intestine. Plasma drug profile upon pharmacokinetic evaluation demonstrated increased AUC, half-life and decreased elimination rate of the drug. Pharmacodynamic studies revealed reduction in the paw volume, bone erosion and cartilage destruction, the same was also reflected in histopathological studies. The TNF-α ELISA concluded that the TNF-α level was significantly reduced in the synovial fluid upon treatment with CQ-SLN, thus, leading to the conclusion that CQ-SLN could be used as a potential in reducing inflammatory TNF-α at the arthritic site and halting the disease progression.


Drug Delivery and Translational Research | 2015

Formulation and evaluation of Adapalene-loaded nanoparticulates for epidermal localization.

Mangesh R. Bhalekar; Prashant G. Upadhaya; Ashwini R. Madgulkar

Adapalene (ADP), a topically administered antiacne drug, finds limitation due to poor penetration, limited localization, and associated incompatibility of photosensitization and skin irritation. To explicate an innovative and safe method for ADP administration and alleviating the associated limitations, solid lipid nanoparticles (SLN) of ADP have been fabricated and evaluated for efficacy in the present work. The SLN were prepared using pre-emulsion sonication method and incorporated into convenient topical dosage form, hydrogels. In vitro permeation studies of the hydrogels through HCS indicated gel containing ADP-SLN showed 2-fold more accumulation in skin layers as compared to conventional ADP gel. Rheological studies demonstrated ADP-SLN gel to possess pseudoplastic behavior, occlusion and hydration studies revealed permeation effectiveness of ADP-SLN gel over conventional ADP gel while primary skin irritation studies established safety of the ADP-SLN gel upon topical application. Hence, it was concluded that the studied ADP-SLN formulation with skin localizing ability may be a promising carrier for topical delivery of ADP.


International Journal of Biological Macromolecules | 2014

Preparation and evaluation of microspheres of xyloglucan and its thiolated xyloglucan derivative.

Savita Sonawane; Mangesh R. Bhalekar; Shamkant Shimpi

Xyloglucan is a natural polymer reported to possess mucoadhesive properties. To enhance the mucoadhesion potential, xyloglucan was thiolated with cysteine. The microspheres of xyloglucan were prepared using a biocompatible crosslinker sodium trimetaphosphate and it was optimized for formulation variables, namely polymer concentration, internal:external phase ratio and stirring speed using a Box-Behnken experimental design. The formulation was also optimized for performance parameters like entrapment, t80 and % mucoadhesion. The microspheres were characterized by Fourier transform infrared spectroscopy, DSC and SEM for the optimum formula and then were reproduced by replacing the xyloglucan with thiomer. The microspheres formed showed entrapment efficiency of about 80%, t80 of about 400min and % mucoadhesion of 60% while same for thiomer were 90%, 500min and 80% respectively. In oral glucose tolerance test protocol the thiomer microspheres showed significant reduction in blood glucose levels. Thus thiolated xyloglucan offers a better polymer for multiparticulate drug delivery.

Collaboration


Dive into the Mangesh R. Bhalekar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanjay Kshirsagar

AISSMS College of Pharmacy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rahul R. Padalkar

AISSMS College of Pharmacy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amrita A. Dikpati

AISSMS College of Pharmacy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nilam Patil

AISSMS College of Pharmacy

View shared research outputs
Top Co-Authors

Avatar

Tushar K. Shete

AISSMS College of Pharmacy

View shared research outputs
Top Co-Authors

Avatar

Abhijeet Bagal

AISSMS College of Pharmacy

View shared research outputs
Researchain Logo
Decentralizing Knowledge