Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manh-Cuong Vo is active.

Publication


Featured researches published by Manh-Cuong Vo.


Experimental Hematology | 2014

Dendritic cells loaded with myeloma cells pretreated with a combination of JSI-124 and bortezomib generate potent myeloma-specific cytotoxic T lymphocytes in vitro

Sung-Hoon Jung; Youn-Kyung Lee; Hyun-Ju Lee; Nu-Ri Choi; Manh-Cuong Vo; My-Dung Hoang; Mi-Seon Lim; Thanh-Nhan Nguyen-Pham; Hyeoung-Joon Kim; Je-Jung Lee

Signal transducer and activator of transcription 3 (STAT3) is highly activated in multiple myeloma. Activated STAT3 promotes survival and proliferation of cancer cells, suppresses Th1 immune response, and induces dysfunction of immune cells. We investigated whether pretreating myeloma cells with a phosphor (p)-STAT3 inhibitor (JSI-124) and/or bortezomib before loading into dendritic cells (DCs) can affect DC function. The combination treatment with JSI-124 and bortezomib resulted in the highest expression of heat shock protein (HSP) 90 and the lowest expression of p-STAT3 in dying myeloma cells. DCs loaded with dying myeloma cells treated by JSI-124 and bortezomib produced the least amount of p-STAT3 compared to other treatments. The DCs were recovered from abnormal cytokine secretions of interleukin (IL)-10, IL-6, and IL-23 without any effect on production of IL-12p70. DCs loaded with JSI-124 and bortezomib treated, dying myeloma cells most potently generated myeloma-specific cytotoxic T lymphocytes (CTLs). The data suggest that pretreatment of myeloma cells with JSI-124 and bortezomib can recover DC function through the up-regulation of HSP90 and the down-regulation of p-STAT3 and inhibitory cytokines, and that these DCs can potently generate myeloma-specific CTLs.


Clinical & Developmental Immunology | 2015

Branched Polyethylenimine-Superparamagnetic Iron Oxide Nanoparticles (bPEI-SPIONs) Improve the Immunogenicity of Tumor Antigens and Enhance Th1 Polarization of Dendritic Cells

My-Dung Hoang; Hwa-Jeong Lee; Hyunju Lee; Sung-Hoon Jung; Nu-Ri Choi; Manh-Cuong Vo; Thanh-Nhan Nguyen-Pham; Hyeoung-Joon Kim; In-Kyu Park; Je-Jung Lee

Nanoparticles in the field of dendritic cell (DC) research are emerging as a promising method of enhancing the efficacy of cancer immunotherapy. We investigated the effect of branched polyethylenimine-superparamagnetic iron oxide nanoparticles (bPEI-SPIONs) on tumor cells loaded onto DCs. The tumor antigens were prepared as follows: (1) apoptotic U266 cells with ultraviolet B (UVB) irradiation followed by a 2 h incubation in the absence (2 h postirradiated cells) or (2) presence of bPEI-SPIONs (bPEI-SPION 2 h postirradiated cells) and (3) apoptotic U266 cells with UVB irradiation followed by an overnight 16 h incubation (16 h postirradiated cells). bPEI-SPIONs render U266 cells sensitive to UVB irradiation through reactive oxygen species production to accelerate apoptotic death. The 2 h postirradiated cells and bPEI-SPION 2 h postirradiated cells released immunogenic proteins, including Hsp70, Hsp90, and HMGB1. The DCs loaded with bPEI-SPION 2 h postirradiated cells showed the highest IL-12p70 production and Th1 polarization compared with other DCs. These results suggest that bPEI-SPIONs are a promising method of enhancing the immunogenicity of tumor cells and promoting Th1 polarization of DCs loaded with these tumor cells.


Oncotarget | 2017

Combination therapy with dendritic cells and lenalidomide is an effective approach to enhance antitumor immunity in a mouse colon cancer model

Manh-Cuong Vo; Thanh-Nhan Nguyen-Pham; Hyunju Lee; Thangaraj Jaya Lakshmi; Seoyun Yang; Sung-Hoon Jung; Hyeoung-Joon Kim; Je-Jung Lee

In this study, we investigated efficacy of lenalidomide in combination with tumor antigen-loaded dendritic cells (DCs) in murine colon cancer model. MC-38 cell lines were injected subcutaneously to establish colon cancer-bearing mice. After tumor growth, lenalidomide (50 mg/kg/day) was injected intraperitoneally on 3 consecutive days in combination with tumor antigen-loaded DC vaccination on days 8, 12, 16, and 20. The tumor antigen-loaded DCs plus lenalidomide combination treatment exhibited a significant inhibition of tumor growth compared with the other groups. These effects were associated with a reduction in immune suppressor cells, such as myeloid-derived suppressor cells and regulatory T cells, with the induction of immune effector cells, such as natural killer cells, CD4+ T cells and CD8+ T cells in spleen, and with the activation of cytotoxic T lymphocytes and NK cells. This study suggests that a combination of tumor antigen-loaded DC vaccination and lenalidomide synergistically enhanced antitumor immune response in the murine colon cancer model, by inhibiting the generation of immune suppressive cells and recovery of effector cells, and demonstrated superior polarization of Th1/Th2 balance in favor of Th1 immune response. This combination approach with DCs and lenalidomide may provide a new therapeutic option to improve the treatment of colon cancer.


Oncotarget | 2017

Chaetocin enhances dendritic cell function via the induction of heat shock protein and cancer testis antigens in myeloma cells

Manh-Cuong Vo; Thanh-Nhan Nguyen-Pham; Hyunju Lee; Sung-Hoon Jung; Nu-Ri Choi; My-Dung Hoang; Hyeoung-Joon Kim; Je-Jung Lee

Dendritic cells (DC)-based vaccines are considered useful in cancer immuno-therapy, and the interactions of DC and dying tumor cells are important and promising for cancer immunotherapy. We investigated whether chaetocin could be used to induce death of myeloma cells, for loading onto DCs can affect DCs function. In this study, we show that the dying myeloma cells treated with chaetocin resulted in the induction of heat shock protein (HSP) 90, which was inhibited by antioxidant N-acetyl cysteine, and showed an increase in the expression of MAGE-A3 and MAGE-C1/CT7. DCs loaded with chaetocin-treated dying myeloma cells produced low levels of IL-10 and enhanced the cross presentation of DCs. Additionally, these DCs most potently inhibited regulatory T cells, induced Th1 polarization and activated myeloma-specific cytotoxic T lymphocytes compared with DCs loaded with UVB-irradiated dying myeloma cells. These results suggest that the pretreatment of myeloma cells with chaetocin can enhance DC function through the up-regulation of HSP90 and cancer testis antigens in dying myeloma cells and can potently induce the Th1 polarization of DCs and myeloma-specific cytotoxic T lymphocytes.


Methods of Molecular Biology | 2014

Generation of Multiple Peptide Cocktail-Pulsed Dendritic Cells as a Cancer Vaccine

Hyun-Ju Lee; Nu-Ri Choi; Manh-Cuong Vo; My-Dung Hoang; Youn-Kyung Lee; Je-Jung Lee

Cancer immunotherapy based on dendritic cell (DC) vaccination has promising alternatives for the treatment of cancer. A central tenet of DC-based cancer immunotherapy is the generation of antigen-specific cytotoxic T lymphocyte (CTL) response. Tumor-associated antigens (TAA) and DC play pivotal roles in this process. DCs are well known to be the most potent antigen-presenting cells and have the most powerful antigen-presenting capacity. DCs pulsed with various TAA have been shown to be effective in producing specific antitumor effects both in vitro and in vivo. Several types of tumor antigens have been applied in cancer treatment including tumor RNA, lysates, apoptotic bodies, heat shock protein, peptides from TAA, and allogeneic tumor cells. Among them, the use of immunogenic HLA-A*0201-specific epitopes from multiple TAA enhances induction of antigen-specific CTL and associated therapeutic efficacy in HLA-A*0201(+) cancer patients. The current chapter provides a detailed protocol of generating multiple peptide cocktail-pulsed DC to elicit CTL with a broad spectrum of immune responses against the related tumor antigens.


Critical Reviews in Oncology Hematology | 2017

Immunotherapy for the treatment of multiple myeloma

Sung-Hoon Jung; Hyun-Ju Lee; Manh-Cuong Vo; Hyeoung-Joon Kim; Je-Jung Lee

Immunotherapy has recently emerged as a promising treatment for multiple myeloma (MM). There are now several monoclonal antibodies that target specific surface antigens on myeloma cells or the checkpoints of immune and myeloma cells. Elotuzumab (targeting SLAMF7), daratumumab (targeting CD38), and pembrolizumab (targeting PD-1) have shown clinical activity in clinical studies with relapsed/refractory MM. Dendritic cell vaccination is a safe strategy that has shown some efficacy in a subset of myeloma patients and may become a crucial part of MM treatment when combined with immunomodulatory drugs or immune check-point blockade. Genetically engineered T cells, such as chimeric antigen receptor T cells or T cell receptor-engineered T cells, have also shown encouraging results in recent clinical studies of patients with MM. In this paper, we discuss recent progress in immunotherapy for the treatment of MM.


Experimental and Molecular Medicine | 2016

Sarcoplasmic reticulum Ca 2+ ATPase 2 (SERCA2) reduces the migratory capacity of CCL21-treated monocyte-derived dendritic cells

Cheol Yi Hong; Hyunju Lee; Nu-Ri Choi; Sung-Hoon Jung; Manh-Cuong Vo; My Dung Hoang; Hyeoung-Joon Kim; Je-Jung Lee

The migration of dendritic cells (DCs) to secondary lymphoid organs depends on chemoattraction through the interaction of the chemokine receptors with chemokines. However, the mechanism of how lymphoid chemokines attract DCs to lymphoid organs remains unclear. Here, we demonstrate the mechanism of DC migration in response to the lymphoid chemokine CCL21. CCL21-mediated DC migration is controlled by the regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) expression rather than through the activation of mitogen-activated protein kinases CCL21-exposed mature DCs (mDCs) exhibited decreased SERCA2 expression but not decreased phospholamban (PLB) or Hax-1 expression, which are known to be SERCA2-interacting proteins. In addition, CCL21 did not affect the mRNA levels of SERCA2 or its interacting protein Hax-1. Interestingly, SERCA2 expression was inversely related to DC migration in response to chemokine stimulation. The migratory capacity of CCL21-treated mDCs was decreased by the phospholipase C inhibitor U73122 and by the protein kinase C inhibitor BAPTA-AM. The migratory capacities of mDCs were increased in response to SERCA2 siRNA expression but were decreased by SERCA2 overexpression. In addition, DCs treated with a SERCA2-specific inhibitor (cyclopiazonic acid) had significantly increased migratory capacities as mDCs regardless of SERCA2 expression. Moreover, SERCA2 expression was dependent on DC maturation induced by cytokines or Toll-like receptor agonists. Therefore, the migratory capacities differed in differentially matured DCs. Taken together, these results suggest that SERCA2 contributes to the migration of CCL21-activated DCs as an important feature of the adaptive immune response and provide novel insights regarding the role of SERCA2 in DC functions.


Frontiers in Immunology | 2018

Lenalidomide and Programmed Death-1 Blockade Synergistically Enhances the Effects of Dendritic Cell Vaccination in a Model of Murine Myeloma

Manh-Cuong Vo; Sung-Hoon Jung; Tan-Huy Chu; Hyunju Lee; Thangaraj Jaya Lakshmi; Hye-Seong Park; Hyeoung-Joon Kim; Joon Haeng Rhee; Je-Jung Lee

The therapeutic efficacy of dendritic cell (DC)-based immunotherapy may be potentiated in combination with other anticancer therapies that enhance DC function by modulating immune responses and the tumor microenvironment. In this study, we investigated the efficacy of DC vaccination in combination with lenalidomide and programmed death (PD)-1 blockade in a model of murine myeloma. MOPC-315 cell lines were injected subcutaneously to establish myeloma-bearing mice and the following five test groups were established: PBS control, DCs, DCs + lenalidomide, DCs + PD-1 blockade, and DCs + lenalidomide + PD-1 blockade. The combination of DCs plus lenalidomide and PD-1 blockade more potently inhibited tumor growth compared to the other groups. This effect was associated with a reduction in immune suppressor cells (such as myeloid-derived suppressor cells, M2 macrophages, and regulatory T cells) and an increase in immune effector cells [such as CD4+ and CD8+ T cells, natural killer (NK) cells, and M1 macrophages] in the spleen. Functional activities of cytotoxic T lymphocytes and NK cells were also enhanced by the triple combination. Levels of immunosuppressive cytokines, such as TGF-β and IL-10, were significantly reduced in the tumor microenvironment. These findings suggest that the combination of DCs plus lenalidomide and PD-1 blockade synergistically establishes a robust anti-myeloma immunity through a two-way mechanism, which inhibits immunosuppressive cells while activating effector cells with superior polarization of the Th1/Th2 balance in favor of the tumor immune response. This result should provide an experimental ground for incorporating check point inhibitors to existing immunotherapeutic modalities against multiple myeloma.


OncoImmunology | 2018

A novel function of API5 (apoptosis inhibitor 5), TLR4-dependent activation of antigen presenting cells

Young Seob Kim; Hyun Jin Park; Jung Hwa Park; Eun Ji Hong; Gun-Young Jang; In Duk Jung; Hee Dong Han; Seung-Hyun Lee; Manh-Cuong Vo; Je-Jung Lee; Andrew Yang; Emily Farmer; T. C. Wu; Tae Heung Kang; Yeong-Min Park

ABSTRACT Dendritic cell (DC)-based vaccines are recognized as a promising immunotherapeutic strategy against cancer. Various adjuvants are often incorporated to enhance the modest immunogenicity of DC vaccines. More specifically, many of the commonly used adjuvants are derived from bacteria. In the current study, we evaluate the use of apoptosis inhibitor 5 (API5), a damage-associated molecular pattern expressed by many human cancer cells, as a novel DC vaccine adjuvant. We showed that API5 can prompt activation and maturation of DCs and activate NFkB by stimulating the Toll-like receptor signaling pathway. We also demonstrated that vaccination with API5-treated DCs pulsed with OVA, E7, or AH1-A5 peptides led to the generation of OVA, E7, or AH1-A5-specific CD8 + T cells and memory T cells, which is associated with long term tumor protection and antitumor effects in mice, against EG.7, TC-1, and CT26 tumors. Additionally, we determined that API5-mediated DC activation and immune stimulation are dependent on TLR4. Lastly, we showed that the API5 protein sequence fragment that is proximal to its leucine zipper motif is responsible for the adjuvant effects exerted by API5. Our data provide evidence that support the use of API5 as a promising adjuvant for DC-based therapies, which can be applied in combination with other cancer therapies. Most notably, our results further support the continued investigation of human-based adjuvants.


Frontiers in Immunology | 2018

Synergistic Antimyeloma Activity of Dendritic Cells and Pomalidomide in a Murine Myeloma Model

Manh-Cuong Vo; Seoyun Yang; Sung-Hoon Jung; Tan-Huy Chu; Hyunju Lee; Thangaraj Jaya Lakshmi; Hye-Seong Park; Hyeoung-Joon Kim; Je-Jung Lee

We have previously shown that immunization with tumor antigen-loaded dendritic cells (DCs) and the immunomodulating drug, lenalidomide, synergistically potentiates the enhancing antitumor immunity in a myeloma mouse model. In this study, we investigated the immunogenicity of DCs combined with pomalidomide and dexamethasone in a myeloma mouse model. MOPC-315 cells were injected subcutaneously to establish myeloma-bearing mice. Four test groups were used to mimic clinical protocol: (1) PBS control, (2) DCs, (3) pomalidomide + dexamethasone, and (4) DCs + pomalidomide + dexamethasone. The combination of DCs plus pomalidomide and dexamethasone displayed greater inhibition of tumor growth compared to the other groups. This effect was closely related with reduced numbers of immune suppressor cells including myeloid-derived suppressor cells, M2 macrophages, and regulatory T cells, with the induction of immune effector cells such as CD4+ and CD8+ T cells, memory T cells, natural killer (NK) cells, and M1 macrophages, and with the activation of T lymphocytes and NK cells in the spleen. Moreover, the level of the immunosuppressive factor vascular endothelial growth factor was significantly reduced in the tumor microenvironment. The collective findings in the murine myeloma model suggest that tumor antigen-loaded DCs combined with pomalidomide and dexamethasone synergistically enhance antitumor immunity by skewing the immune-suppressive status toward an immune-supportive status.

Collaboration


Dive into the Manh-Cuong Vo's collaboration.

Top Co-Authors

Avatar

Je-Jung Lee

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Hyeoung-Joon Kim

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Sung-Hoon Jung

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Nu-Ri Choi

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

My-Dung Hoang

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Hyun-Ju Lee

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Hyunju Lee

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seoyun Yang

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge