Manhai Long
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manhai Long.
Environmental Health Perspectives | 2007
Eva Cecilie Bonefeld-Jørgensen; Manhai Long; Marlene V. Hofmeister; Anne Marie Vinggaard
Background An array of environmental compounds is known to possess endocrine disruption (ED) potentials. Bisphenol A (BPA) and bisphenol A dimethacrylate (BPA-DM) are monomers used to a high extent in the plastic industry and as dental sealants. Alkylphenols such as 4-n-nonylphenol (nNP) and 4-n-octylphenol (nOP) are widely used as surfactants. Objectives We investigated the effect in vitro of these four compounds on four key cell mechanisms including transactivation of a) the human estrogen receptor (ER), b) the human androgen receptor (AR), c) the aryl hydrocarbon receptor (AhR), and d) aromatase activity. Results All four compounds inhibited aromatase activity and were agonists and antagonists of ER and AR, respectively. nNP increased AhR activity concentration-dependently and further increased the 2,3,7,8-tetrachlorodibenzo-p-dioxin AhR action. nOP caused dual responses with a weak increased and a decreased AhR activity at lower (10−8 M) and higher concentrations (10−5–10−4 M), respectively. AhR activity was inhibited with BPA (10−5–10−4 M) and weakly increased with BPA-DM (10−5 M), respectively. nNP showed the highest relative potency (REP) compared with the respective controls in the ER, AhR, and aromatase assays, whereas similar REP was observed for the four chemicals in the AR assay. Conclusion Our in vitro data clearly indicate that the four industrial compounds have ED potentials and that the effects can be mediated via several cellular pathways, including the two sex steroid hormone receptors (ER and AR), aromatase activity converting testosterone to estrogen, and AhR; AhR is involved in syntheses of steroids and metabolism of steroids and xenobiotic compounds.
Toxicology | 2008
Tanja Krüger; Manhai Long; Eva Cecilie Bonefeld-Jørgensen
Phenols and plasticizers are widely used in the plastic industry, in food packaging and to impart softness and flexibility to normally rigid plastic medical devices and childrens toys. The effects on the aryl hydrocarbon receptor (AhR) and the androgen receptor (AR) were assessed using luciferase reporter gene assays of the following compounds: bisphenol A (BPA), 4-n-nonylphenol (nNP), 4-tert-octylphenol (tOP), bis(2-ethylhexyl) phthalate (DEHP), di-isononyl phthalate (DINP), diisodecyl phthalate (DIDP), di-n-octyl phthalate (DNOP), dibutyl phthalate (DBP), benzyl butyl phthalate (BBP), 4-chloro-3-methylphenol (CMP), 2-phenylphenol (2-PP), 2,4-dichlorophenol (DCP), resorcinol and bis(2-ethylhexyl) adipate (DEHA). Furthermore, a mixture of selected compounds was tested at the no-observed-effect concentration (NOEC), the low-observed-effect concentration (LOEC) and the half-maximum-effect/inhibitory concentration (EC50/IC50) of the single chemicals. Both receptors were affected by BPA, nNP, BBP, CMP, DCP and resorcinol whereas DEHP, DIDP and DBP affected only the AhR and tOP and 2-PP antagonised the AR activity. The mixture was composed of 6 compounds, of which one compound weakly induced the AhR but all compounds antagonized the AR activation. Using the concentration addition principle additive effects were observed at the NOEC, LOEC and EC50/IC50 for both receptors. Our in vitro data suggest that the effect of a mixture depends on the concentration, character, potency and composition of the single mixture compounds and that also the combined effects of the compounds should be taken into consideration for risk assessment of human health.
Environmental Health | 2011
Eva Cecilie Bonefeld-Jørgensen; Manhai Long; Rossana Bossi; Pierre Ayotte; Gert Asmund; Tanja Krüger; Mandana Ghisari; Gert Mulvad; Peder Kern; Peter Nzulumiki; Eric Dewailly
BackgroundBreast cancer (BC) is the most common cancer for women in the western world. From very few cases an extraordinary increase in BC was observed in the Inuit population of Greenland and Canada although still lower than in western populations. Previous data suggest that exposure to persistent organic pollutants (POPs) might contribute to the risk of BC. Rat studies showed that perfluorinated compounds (PFCs) cause significantly increase in mammary fibroadenomas. This study aimed at evaluating the association between serum levels of POPs/PFCs in Greenlandic Inuit BC cases and their controls, and whether the combined POP related effect on nuclear hormone receptors affect BC risk.MethodsThirty-one BC cases and 115 controls were sampled during 2000-2003 from various Greenlandic districts. The serum levels of POPs, PFCs, some metals and the combined serum POP related effect on estrogen- (ER), androgen- (AR) and Ah-receptor (AhR) transactivity were determined. Independent student t-test was used to compare the differences and the odds ratios were estimated by unconditional logistic regression models.ResultsWe observed for the very first time a significant association between serum PFC levels and the risk of BC. The BC cases also showed a significantly higher concentration of polychlorinated biphenyls at the highest quartile. Also for the combined serum POP induced agonistic AR transactivity significant association to BC risk was found, and cases elicited a higher frequency of samples with significant POP related hormone-like agonistic ER transactivity. The AhR toxic equivalent was lowest in cases.ConclusionsThe level of serum POPs, particularly PFCs, might be risk factors in the development of BC in Inuit. Hormone disruption by the combined serum POP related xenoestrogenic and xenoandrogenic activities may contribute to the risk of developing breast cancer in Inuit. Further investigations are needed to document these study conclusions.
Environmental Toxicology and Chemistry | 2011
Kresten Ole Kusk; Tanja Krüger; Manhai Long; Camilla Taxvig; Anne E. Lykkesfeldt; Hanne Frederiksen; Anna-Maria Andersson; Henrik Rasmus Andersen; Kamilla Marie Speht Hansen; Christine Nellemann; Eva Cecilie Bonefeld-Jørgensen
Industrial and municipal effluents are important sources of endocrine disrupting compounds (EDCs) discharged into the aquatic environment. This study investigated the endocrine potency of wastewater and the cleaning efficiency of two typical urban Danish sewage treatment plants (STPs), using chemical analysis and a battery of bioassays. Influent samples, collected at the first STP grate, and effluent samples, collected after the sewage treatment, were extracted using solid phase extraction. Extracts were analyzed for the content of a range of industrial chemicals with endocrine disrupting properties: phthalate metabolites, parabens, industrial phenols, ultraviolet screens, and natural and synthetic steroid estrogens. The endocrine disrupting bioactivity and toxicity of the extracts were analyzed in cell culture assay for the potency to affect the function of the estrogen, androgen, aryl hydrocarbon, and thyroid receptors as well as the steroid hormone synthesis. The early-life stage (ELS) development was tested in a marine copepod. The concentrations of all analyzed chemicals were reduced in effluents compared with influents, and for some to below the detection limit. Influent as well as effluent samples from both STPs were found to interact with all four receptors and to interfere with the steroid hormone synthesis showing the presence of measured EDCs. Both influent samples and one of the effluent samples inhibited the development of the copepod Acartia tonsa. In conclusion, the presence of EDCs was reduced in the STPs but not eliminated, as verified by the applied bioassays that all responded to the extracts of effluent samples. Our data suggest that the wastewater treatment processes are not efficient enough to prevent contamination of environmental surface waters.
Environmental Health | 2014
Mandana Ghisari; Manhai Long; Eva Cecilie Bonefeld-Jørgensen
BackgroundWe have previously reported that chemicals belonging to the persistent organic pollutants (POPs) such as perfluorinated compounds (PFAS) and polychlorinated biphenyls (PCBs) are risk factors in Breast Cancer (BC) development in Greenlandic Inuit women. The present case–control study aimed to investigate the main effect of polymorphisms in genes involved in xenobiotic metabolism and estrogen biosynthesis, CYP1A1, CYP1B1, COMT and CYP17, CYP19 and the BRCA1 founder mutation in relation to BC risk and to explore possible interactions between the gene polymorphisms and serum POP levels on BC risk in Greenlandic Inuit women.MethodsThe study population consisted of 31 BC cases and 115 matched controls, with information on serum levels of POPs. Genotyping was conducted for CYP1A1 (Ile462Val; rs1048943), CYP1B1 (Leu432Val; rs1056836), COMT (Val158Met; rs4680), CYP17A1 (A1> A2; rs743572); CYP19A1 (C> T; rs10046) and CYP19A1 ((TTTA)n repeats) polymorphisms and BRCA1 founder mutation using TaqMan allelic discrimination method and polymerase chain reaction based restriction fragment length polymorphism. The χ2 –test was used to compare categorical variables between cases and controls and the odds ratios were estimated by unconditional logistic regression models.ResultsWe found an independent association of CYP1A1 (Val) and CYP17 (A1) with BC risk.Furthermore, an increased BC risk was observed for women with high serum levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) and carriers of at least: one CYP1A1 variant Val allele; one variant COMT Met allele; or the common CYP17 A1 allele. No combined effects were seen between PFAS exposure and CYP1B1 and CYP19 polymorphisms. The risk of BC was not found significantly associated with exposure to PCBs and OCPs, regardless of genotype for all investigated SNPs. The frequency of the Greenlandic founder mutation in BRCA1 was as expected higher in cases than in controls.ConclusionsThe BRCA1 founder mutation and polymorphisms in CYP1A1 (Val) and CYP17 (A1) can increase the BC risk among Inuit women and the risk increases with higher serum levels of PFOS and PFOA. Serum PFAS levels were a consistent risk factor of BC, but inter-individual polymorphic differences might cause variations in sensitivity to the PFAS/POP exposure.
Basic & Clinical Pharmacology & Toxicology | 2014
Eva Cecilie Bonefeld-Jørgensen; Mandana Ghisari; Maria Wielsøe; Christian Bjerregaard-Olesen; Lisbeth Stigaard Kjeldsen; Manhai Long
Persistent organic pollutants (POPs) include lipophilic legacy POPs and the amphiphilic perfluorinated alkyl acids (PFAAs). They have long half-lives and bioaccumulate in the environment, animals and human beings. POPs possess toxic, carcinogenic and endocrine-disrupting potentials. Endocrine-disrupting chemicals (EDCs) are compounds that either mimic or block endogenous hormones and thus disrupt the normal hormone homeostasis. Biomonitoring assesses the internal doses of a person to provide information about chemical exposures. Effect biomarkers assess chemicals potential to affect cellular functions in vivo/ex vivo. Human beings are exposed to complex mixtures of chemicals, having individually very different biological potentials and effects. Therefore, the assessment of the combined, integrated biological effect of the actual chemical mixture in human blood is important. In vitro and ex vivo cell systems have been introduced for the assessment of the integrated level of xenobiotic cellular effects in human beings. Ex vivo studies have shown geographical differences in bioaccumulated POP serum levels, being reflected by the combined biomarker effects of the complex mixture extracted from human serum. Xenohormone receptor transactivities can be used as an ex vivo integrated biomarker of POP exposure and effects. Epidemiological and in vitro/ex vivo studies have supported the potential impact of the combined effect of serum POPs on the activity of hormone and/or dioxin receptors as a risk factor for human health. With focus on hormone disruption, this MiniReview will give an update on recent POP-related endocrine-disrupting effects in vitro/ex vivo/in vivo and some related genetic data.
Environment International | 2016
Christian Bjerregaard-Olesen; Cathrine Carlsen Bach; Manhai Long; Mandana Ghisari; Rossana Bossi; Bodil Hammer Bech; Ellen Aagaard Nohr; Tine Brink Henriksen; Jørn Olsen; Eva Cecilie Bonefeld-Jørgensen
We aimed to estimate the levels and time trends of perfluorinated alkyl acids (PFAAs) in serum of 1533 Danish pregnant nulliparous women between 2008 and 2013. The selection criterion of only including nulliparous women was chosen to avoid confounding from parity. The serum samples were analyzed for sixteen PFAAs using solid phase extraction and liquid chromatography tandem mass spectrometry (LC-MS/MS). We investigated the time trends for seven PFAAs, which were detected in more than 50% of the samples: perfluorohexane sulfonate (PFHxS), perfluoroheptane sulfonate (PFHpS), perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnA). We found that the serum levels of all seven PFAAs decreased during the period from 2008 to 2013; on average PFHxS decreased with 7.0% per year, PFHpS with 14.8%, PFOS with 9.3%, PFOA with 9.1%, PFNA with 6.2%, PFDA with 6.3%, and PFUnA with 7.1% per year. Adjustment for maternal age, body mass index (BMI), educational level and gestational age at blood sampling did not change the time trends much. To our knowledge, we are the first to report decreasing trends of PFNA, PFDA and PFUnA since year 2000, thereby indicating that the phase-out of these compounds are beginning to show an effect on human serum levels.
International Journal of Circumpolar Health | 2012
Manhai Long; Rossana Bossi; Eva Cecilie Bonefeld-Jørgensen
Objectives: Perfluoroalkyl acids (PFAAs) have been detected in human blood, breast milk and umbilical cord blood across the globe. PFAAs do accumulate in the marine food chain in Arctic regions. In Greenland, increasing PFAA concentrations were observed during 1982–2006 in ringed seals and polar bears. However, until now, no data have been reported for PFAAs in Greenlandic Inuit. This study assesses the level and temporal trend of serum PFAAs in Greenlandic Inuit. Study design: Cross-section and temporal time trend survey. Methods: Serum PFAA levels were determined in 284 Inuit from different Greenlandic districts using liquid chromatography-tandem mass spectrometry with electrospray ionization. The temporal time trend of serum PFAAs in Nuuk Inuit during 1998–2005 and the correlation between serum PFAAs and legacy persistent organic pollutants (POPs) were explored. Results: Serum PFAA levels were higher in Nuuk Inuit than in non-Nuuk Inuit. Within the same district, higher PFAA levels were observed for males. An age-dependent, increasing trend of serum PFAA levels in the period from 1998–2005 was observed for Nuuk Inuit. For the pooled gender data, no significant association between PFAAs and legacy POPs was observed for Nuuk Inuit while for non-Nuuk Inuit this correlation was significant. No correlation between PFAAs and legacy POPs was found for male Inuit, whereas significant correlation was observed both for pooled female Inuit and for non-Nuuk Inuit females. Conclusions: We suggest that sources other than seafood intake might contribute to the observed higher PFAA levels in Nuuk Inuit compared to the pooled non-Nuuk Inuit. 1Published ‘ahead-of-print’ 13 December 2011 (at www.ijch.fi) in accordance with previous publishers routines.
Chemosphere | 2012
Manhai Long; Eva Cecilie Bonefeld-Jørgensen
Dioxins and dioxin-like (DL) compounds are some of the most toxic chemicals being highly persistent in the environment. The toxicological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR). Compounds of diverse structure and lipophility can bind and activate AhR. The AhR transactivation bioassay is utilized in an array of projects to study the AhR-mediated activities of individual chemicals and mixtures and for epidemiological purposes. This review summarizes a series of studies regarding the DL-activity of single compounds and complex compound mixtures in the environment and humans. We found that some pesticides, plasticizers and phytoestrogens can activate the AhR, and the combined effect of compounds with no or weak AhR potency cannot be ignored. The significant DL-activity in the wastewater effluent indicates the treatment is not sufficient to prevent contamination of surface waters with dioxins. Our results from human studies suggest that the serum DL-activity reflect the complex mixture of persistent organic pollutants (POPs). Greenlandic Inuit had lower serum DL-activity level compared to Europeans, probably due to long distance from the dioxin sources and UV degradation of the high potent dioxin and/or the inhibitory effect of the high level of non-DL POPs. Selective bioaccumulation of PCBs in the food chain may contribute to the negative correlation between serum POPs and DL-activity observed in Greenlandic Inuit. Hence the AhR transactivation bioassay provides a cost-effective and integrated screening tool for measurement of the DL-activity in human, environmental and commercial samples.
Science of The Total Environment | 2015
Manhai Long; Ane-Kersti Skaarup Knudsen; Henning Sloth Pedersen; Eva Cecilie Bonefeld-Jørgensen
The Greenlandic Inuit have high blood concentrations of environmental persistent organic pollutants (POPs). High POP concentrations have been associated with age, smoking and consumption of marine mammals. Studies have indicated that exposure to POPs during pregnancy may adversely affect fetal and child development. To assess geographical differences in diet, lifestyle and environmental contaminant exposure among pregnant women in Greenland, blood samples and questionnaire data were collected from 207 pregnant women in five Greenlandic regions (North, Disco Bay, West, South and East). Blood samples were analyzed for 11 organochlorine pesticides (OCPs), 14 polychlorinated biphenyls (PCBs), 5 polybrominated diphenyl ethers (PBDEs), 15 perfluoroalkylated substances (PFASs) and 63 metals. A trend of higher intake of marine mammals in the East and North regions was reflected by a higher n-3/n-6 fatty acid ratio. Participants in the East region tended also to have higher intake of terrestrial species. A significant higher seabird intake was seen for pregnant women in the West region. Significant regional differences were found for blood concentrations of PCBs, OCPs, PFASs and mercury, with higher levels in the North and East regions. PFASs were significantly associated with PCBs and OCPs in most of the regions. In the North region, PFASs were associated with both selenium and mercury. No significant regional difference was observed for PBDEs. The regional differences of blood levels of POPs and mercury were related to differences in intake of the traditional food. Compared to earlier reports, decreased levels of legacy POPs, Hg and Pb and perfluorooctane sulfonate and perfluorooctanoic acid were observed, but the levels of PFAS congeners perfluorohexane sulfonate and perfluorononanoic acid were sustained. The detection of POPs and heavy metals in maternal blood indicates fetal exposure to these compounds possibly influencing fetal development.