Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mani Farjam is active.

Publication


Featured researches published by Mani Farjam.


Nano Letters | 2010

Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene

D. Haberer; D. V. Vyalikh; S. Taioli; Balázs Dóra; Mani Farjam; J. Fink; D. Marchenko; T. Pichler; K. Ziegler; Stefano Simonucci; Mildred S. Dresselhaus; M. Knupfer; Bernd Büchner; A. Grüneis

We show by angle-resolved photoemission spectroscopy that a tunable gap in quasi-free-standing monolayer graphene on Au can be induced by hydrogenation. The size of the gap can be controlled via hydrogen loading and reaches approximately 1.0 eV for a hydrogen coverage of 8%. The local rehybridization from sp(2) to sp(3) in the chemical bonding is observed by X-ray photoelectron spectroscopy and X-ray absorption and allows for a determination of the amount of chemisorbed hydrogen. The hydrogen induced gap formation is completely reversible by annealing without damaging the graphene. Calculations of the hydrogen loading dependent core level binding energies and the spectral function of graphene are in excellent agreement with photoemission experiments. Hydrogenation of graphene gives access to tunable electronic and optical properties and thereby provides a model system to study hydrogen storage in carbon materials.


Physical Review B | 2009

Comment on Band structure engineering of graphene by strain: First-principles calculations

Mani Farjam; H. Rafii-Tabar

In their first-principles calculations of the electronic band structure of graphene under uniaxial strain, Gui, Li, and Zhong, [Phys. Rev. B 78, 075435 (2008)] have found opening of band gaps at the Fermi level. This finding is in conflict with the tight-binding description of graphene which is closed gap for small strains. In this Comment, we present first-principles calculations which refute the claim that strain opens band gaps in graphene.


Nano Letters | 2014

The Chemistry of Imperfections in N‑Graphene

D. Usachov; Alexander Fedorov; Oleg Yu. Vilkov; B. V. Senkovskiy; V. K. Adamchuk; L. V. Yashina; A. A. Volykhov; Mani Farjam; N. I. Verbitskiy; A. Grüneis; C. Laubschat; D. V. Vyalikh

Many propositions have been already put forth for the practical use of N-graphene in various devices, such as batteries, sensors, ultracapacitors, and next generation electronics. However, the chemistry of nitrogen imperfections in this material still remains an enigma. Here we demonstrate a method to handle N-impurities in graphene, which allows efficient conversion of pyridinic N to graphitic N and therefore precise tuning of the charge carrier concentration. By applying photoemission spectroscopy and density functional calculations, we show that the electron doping effect of graphitic N is strongly suppressed by pyridinic N. As the latter is converted into the graphitic configuration, the efficiency of doping rises up to half of electron charge per N atom.


ACS Nano | 2015

Epitaxial B-Graphene: Large-Scale Growth and Atomic Structure

D. Usachov; Alexander Fedorov; Anatoly E. Petukhov; Oleg Yu. Vilkov; A. G. Rybkin; M. M. Otrokov; A. Arnau; E. V. Chulkov; L. V. Yashina; Mani Farjam; V. K. Adamchuk; B. V. Senkovskiy; C. Laubschat; D. V. Vyalikh

Embedding foreign atoms or molecules in graphene has become the key approach in its functionalization and is intensively used for tuning its structural and electronic properties. Here, we present an efficient method based on chemical vapor deposition for large scale growth of boron-doped graphene (B-graphene) on Ni(111) and Co(0001) substrates using carborane molecules as the precursor. It is shown that up to 19 at. % of boron can be embedded in the graphene matrix and that a planar C-B sp(2) network is formed. It is resistant to air exposure and widely retains the electronic structure of graphene on metals. The large-scale and local structure of this material has been explored depending on boron content and substrate. By resolving individual impurities with scanning tunneling microscopy we have demonstrated the possibility for preferential substitution of carbon with boron in one of the graphene sublattices (unbalanced sublattice doping) at low doping level on the Ni(111) substrate. At high boron content the honeycomb lattice of B-graphene is strongly distorted, and therefore, it demonstrates no unballanced sublattice doping.


ACS Nano | 2012

Probing Local Hydrogen Impurities in Quasi-Free-Standing Graphene

Martha Scheffler; Danny Haberer; L. Petaccia; Mani Farjam; Ronny Schlegel; Danny Baumann; Torben Hänke; A. Grüneis; M. Knupfer; Christian Hess; Bernd Büchner

We report high-resolution scanning tunneling microscopy and spectroscopy of hydrogenated, quasi-free-standing graphene. For this material, theory has predicted the appearance of a midgap state at the Fermi level, and first angle-resolved photoemission spectroscopy (ARPES) studies have provided evidence for the existence of this state in the long-range electronic structure. However, the spatial extension of H defects, their preferential adsorption patterns on graphene, or local electronic structure are experimentally still largely unexplored. Here, we investigate the shapes and local electronic structure of H impurities that go with the aforementioned midgap state observed in ARPES. Our measurements of the local density of states at hydrogenated patches of graphene reveal a hydrogen impurity state near the Fermi level whose shape depends on the tip position with respect to the center of a patch. In the low H concentration regime, we further observe predominantly single hydrogenation sites as well as extended multiple C-H sites in parallel orientation to the lattice vectors, indicating an adsorption at the same graphene sublattice. This is corroborated by ARPES measurements showing the formation of a dispersionless hydrogen impurity state which is extended over the whole Brillouin zone.


Journal of Physics: Condensed Matter | 2012

First-principles study of bandgap effects in graphene due to hydrogen adsorption.

Mahboobeh Mirzadeh; Mani Farjam

Hydrogen adsorption on graphene in commensurate periodic arrangements leads to bandgap opening at the Dirac point and the emergence of dispersionless midgap bands. We study these bandgap effects and their dependence on periodicity for a single hydrogen adsorbate on periodic graphene supercells using spin-polarized density-functional theory calculations. Our results show that for certain periodicities, marked by a scale factor of three, the bandgap is suppressed to a great extent, and has a special level structure around the neutrality point. We present explanations for the origin of the changes to the band structure in terms of the ab initio Hamiltonian matrix. This method may be used to obtain a more accurate tight-binding description of single hydrogen adsorption on graphene.


Journal of Physics: Condensed Matter | 2014

Visualizing the influence of point defects on the electronic band structure of graphene.

Mani Farjam

The supercell approach enables us to treat the electronic structure of defective crystals, but the calculated energy bands are too complicated to understand or compare with angle-resolved photoemission spectra because of inevitable zone folding. We discuss how to visualize supercell band structures more effectively by incorporating unfolded spectral weights and orbital decompositions into them. We then apply these ideas to gain a better understanding of the band structure of graphene containing various types of point defects, including nitrogen impurity, hydrogen adsorbate, vacancy defects and the Stone-Wales defect.


Physica E-low-dimensional Systems & Nanostructures | 2010

Uniaxial strain on gapped graphene

Mani Farjam; H. Rafii-Tabar

Abstract We study the effect of uniaxial strain on the electronic band structure of gapped graphene. We consider two types of gapped graphene, one which breaks the symmetry between the two triangular sublattices (staggered model), and another which alternates the bonds on the honeycomb lattice (Kekule model). In the staggered model, the effect of strains below a critical value is only a shift of the band gap location. In the Kekule model, as strain is increased, band gap location is initially pinned to a corner of the Brillouin zone while its width diminishes, and after gap closure the location of the contact point begins to shift. Analytic and numerical results are obtained for both the tight-binding and Dirac fermion descriptions of gapped graphene.


Physical Review B | 2011

Effect of hydrogen adsorption on the quasiparticle spectra of graphene

Mani Farjam; Danny Haberer; A. Grüneis

We use the non-interacting tight-binding model to study the effect of isolated hydrogen adsorbates on the quasiparticle spectra of single-layer graphene. Using the Greens function approach, we obtain analytic expressions for the local density of states and the spectral function of hydrogen-doped graphene, which are also numerically evaluated and plotted. Our results are relevant for the interpretation of scanning tunneling microscopy and angle-resolved photoemission spectroscopy data of functionalized graphene.


International Journal of Modern Physics B | 2015

Adsorption-site dependence of electronic and magnetic properties of hydrogen impurities on bilayer graphene

Mahboobeh Mirzadeh; Mani Farjam

In bilayer graphene, the A and B sites in each layer have different local electronic structures due to the presence of the second layer. In this work, using first-principles calculations, we examine the effect of sublattice inequivalence on various properties of hydrogen defects in bilayer graphene. Density functional calculations show that induced magnetic moments by H adsorption on A and B sites of bilayer graphene are both equal to 1μB at zero temperature, but change slightly and develop a mismatch at finite temperature. We show how this variation follows from the fact that H on A site remains gapless but H on B site opens an energy gap. We also use a tight-binding model to explain the differences in band structures for H adsorption on A and B sites. The results obtained in this work suggest that there are important differences in electronic and magnetic properties between H adsorption on monolayer and bilayer graphene.

Collaboration


Dive into the Mani Farjam's collaboration.

Top Co-Authors

Avatar

Danny Haberer

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. V. Vyalikh

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Fedorov

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Usachov

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge