Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mani Larijani is active.

Publication


Featured researches published by Mani Larijani.


Nature | 2012

Acquisition of a multifunctional IgA + plasma cell phenotype in the gut

Jörg H. Fritz; Olga L. Rojas; Nathalie Simard; Douglas D. McCarthy; Siegfried Hapfelmeier; Stephen Rubino; Susan J. Robertson; Mani Larijani; Jean Gosselin; Ivaylo I. Ivanov; Alberto Martin; Rafael Casellas; Dana J. Philpott; Stephen E. Girardin; Kathy D. McCoy; Andrew J. Macpherson; Christopher J. Paige; Jennifer L. Gommerman

The largest mucosal surface in the body is in the gastrointestinal tract, a location that is heavily colonized by microbes that are normally harmless. A key mechanism required for maintaining a homeostatic balance between this microbial burden and the lymphocytes that densely populate the gastrointestinal tract is the production and transepithelial transport of poly-reactive IgA (ref. 1). Within the mucosal tissues, B cells respond to cytokines, sometimes in the absence of T-cell help, undergo class switch recombination of their immunoglobulin receptor to IgA, and differentiate to become plasma cells. However, IgA-secreting plasma cells probably have additional attributes that are needed for coping with the tremendous bacterial load in the gastrointestinal tract. Here we report that mouse IgA+ plasma cells also produce the antimicrobial mediators tumour-necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS), and express many molecules that are commonly associated with monocyte/granulocytic cell types. The development of iNOS-producing IgA+ plasma cells can be recapitulated in vitro in the presence of gut stroma, and the acquisition of this multifunctional phenotype in vivo and in vitro relies on microbial co-stimulation. Deletion of TNF-α and iNOS in B-lineage cells resulted in a reduction in IgA production, altered diversification of the gut microbiota and poor clearance of a gut-tropic pathogen. These findings reveal a novel adaptation to maintaining homeostasis in the gut, and extend the repertoire of protective responses exhibited by some B-lineage cells.


Molecular and Cellular Biology | 2007

AID Associates with Single-Stranded DNA with High Affinity and a Long Complex Half-Life in a Sequence-Independent Manner

Mani Larijani; Alexander P. Petrov; Oxana Kolenchenko; Maribel Berru; Sergey N. Krylov; Alberto Martin

ABSTRACT Activation-induced cytidine deaminase (AID) initiates secondary antibody diversification processes by deaminating cytidines on single-stranded DNA. AID preferentially mutates cytidines preceded by W(A/T)R(A/G) dinucleotides, a sequence specificity that is evolutionarily conserved from bony fish to humans. To uncover the biochemical mechanism of AID, we compared the catalytic and binding kinetics of AID on WRC (a hot-spot motif, where W equals A or T and R equals A or G) and non-WRC motifs. We show that although purified AID preferentially deaminates WRC over non-WRC motifs to the same degree observed in vivo, it exhibits similar binding affinities to either motif, indicating that its sequence specificity is not due to preferential binding of WRC motifs. AID preferentially deaminates bubble substrates of five to seven nucleotides rather than larger bubbles and preferentially binds to bubble-type rather than to single-stranded DNA substrates, suggesting that the natural targets of AID are either transcription bubbles or stem-loop structures. Importantly, AID displays remarkably high affinity for single-stranded DNA as indicated by the low dissociation constants and long half-life of complex dissociation that are typical of transcription factors and single-stranded DNA binding protein. These findings suggest that AID may persist on immunoglobulin and other target sequences after deamination, possibly acting as a scaffolding protein to recruit other factors.


Immunogenetics | 2005

The mutation spectrum of purified AID is similar to the mutability index in Ramos cells and in ung −/− msh2 −/− mice

Mani Larijani; Darina Frieder; Wajiha Basit; Alberto Martin

Somatic hypermutation and class switch recombination are initiated by the enzyme activation-induced cytidine deaminase (AID). Although other models exist for AID function, one model suggests that AID initiates these processes by deaminating cytidines within DNA, thereby initiating mutagenic repair pathways that involve either UNG or Msh2. Recent work shows that GST-hAID prefers to mutate WRC motifs, a motif frequently mutated in vivo. Because this is a strong argument in favor of the DNA deamination model, we sought to extend this analysis by examining the activity of purified AID with a small polyhistidine tag (His-hAID) on all 16 trinucleotide combinations (i.e., NNC). Here we show that purified His-hAID preferentially mutated cytidines within WRC (i.e., A/T, A/G, C) motifs, but poorly mutated cytidines within GYC (G, C/T, C) motifs. We next compared this mutability preference with those in hypermutating Ramos cells and in msh2−/−ung−/− mice, since both are reduced or deficient in UNG- and/or Msh2-induced mutations and are thus likely to reflect the sequence specificity of the mutator in vivo. Indeed, the mutation spectrums of purified His-hAID and GST-hAID matched the trinucleotide mutability indexes in Ramos cells and in msh2−/−ung−/− mice. Thus, the activity of AID on single-stranded DNA produces the same mutation pattern as double-stranded DNA in hypermutating cells. These data lend support to the DNA deamination model and indicate that AID does not require co-factors for its WRC specificity.


Molecular and Cellular Biology | 2009

The concerted action of Msh2 and UNG stimulates somatic hypermutation at A . T base pairs.

Darina Frieder; Mani Larijani; Cathy Collins; Marc J. Shulman; Alberto Martin

ABSTRACT Mismatch repair plays an essential role in reducing the cellular mutation load. Paradoxically, proteins in this pathway produce A·T mutations during the somatic hypermutation of immunoglobulin genes. Although recent evidence implicates the translesional DNA polymerase η in producing these mutations, it is unknown how this or other translesional polymerases are recruited to immunoglobulin genes, since these enzymes are not normally utilized in conventional mismatch repair. In this report, we demonstrate that A·T mutations were closely associated with transversion mutations at a deoxycytidine. Furthermore, deficiency in uracil-N-glycolase (UNG) or mismatch repair reduced this association. These data reveal a previously unknown interaction between the base excision and mismatch repair pathways and indicate that an abasic site generated by UNG within the mismatch repair tract recruits an error-prone polymerase, which then introduces A·T mutations. Our analysis further indicates that repair tracts typically are ∼200 nucleotides long and that polymerase η makes ∼1 error per 300 T nucleotides. The concerted action of Msh2 and UNG in stimulating A·T mutations also may have implications for mutagenesis at sites of spontaneous cytidine deamination.


Molecular and Cellular Biology | 2007

Single-Stranded DNA Structure and Positional Context of the Target Cytidine Determine the Enzymatic Efficiency of AID

Mani Larijani; Alberto Martin

ABSTRACT Activation-induced cytidine deaminase (AID) initiates antibody diversification processes by deaminating immunoglobulin sequences. Since transcription of target genes is required for deamination in vivo and AID exclusively mutates single-stranded DNA (ssDNA) in vitro, AID has been postulated to mutate transcription bubbles. However, since ssDNA generated by transcription can assume multiple structures, it is unknown which of these are targeted in vivo. Here we examine the enzymatic and binding properties of AID for different DNA structures. We report that AID has minimal activity on stem-loop structures and preferentially deaminates five-nucleotide bubbles. We compared AID activity on cytidines placed at various distances from the single-stranded/double-stranded DNA junction of bubble substrates and found that the optimal target consists of a single-stranded NWRCN motif. We also show that high-affinity binding is required for but does not necessarily lead to efficient deamination. Using nucleotide analogues, we show that AIDs WRC preference (W = A or T; R = A or G) involves the recognition of a purine in the R position and that the carbonyl or amino side chains of guanosine negatively influence specificity at the W position. Our results indicate that AID is likely to target short-tract regions of ssDNA produced by transcription elongation and that it requires a fully single-stranded WRC motif.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Activation induced deaminase C-terminal domain links DNA breaks to end protection and repair during class switch recombination

Astrid Zahn; Anil K. Eranki; Anne Marie Patenaude; Stephen P. Methot; Heather Fifield; Elena M. Cortizas; Paul S. Foster; Kohsuke Imai; Anne Durandy; Mani Larijani; Ramiro E. Verdun; Javier M. Di Noia

Significance The enzyme activation-induced deaminase (AID) triggers antibody class switch recombination (CSR), a critical mechanism for immune response. CSR is an intrachromosomal rearrangement requiring DNA double strand breaks that are initiated by AID and must be repaired by specific DNA repair pathways. We identify a domain of AID that is required to link the DNA damage step with the subsequent repair during CSR as well as for chromosomal translocations, a collateral effect of CSR. AID influences the recruitment of appropriate end-joining pathways for CSR, preventing aberrant DNA processing that leads to cell death or nonproductive repair and dominant-negative effects. Our results can also explain the basis of an autosomal dominant immunodeficiency caused by C-terminally truncated AID variants. Activation-induced deaminase (AID) triggers antibody class switch recombination (CSR) in B cells by initiating DNA double strand breaks that are repaired by nonhomologous end-joining pathways. A role for AID at the repair step is unclear. We show that specific inactivation of the C-terminal AID domain encoded by exon 5 (E5) allows very efficient deamination of the AID target regions but greatly impacts the efficiency and quality of subsequent DNA repair. Specifically eliminating E5 not only precludes CSR but also, causes an atypical, enzymatic activity-dependent dominant-negative effect on CSR. Moreover, the E5 domain is required for the formation of AID-dependent Igh-cMyc chromosomal translocations. DNA breaks at the Igh switch regions induced by AID lacking E5 display defective end joining, failing to recruit DNA damage response factors and undergoing extensive end resection. These defects lead to nonproductive resolutions, such as rearrangements and homologous recombination that can antagonize CSR. Our results can explain the autosomal dominant inheritance of AID variants with truncated E5 in patients with hyper-IgM syndrome 2 and establish that AID, through the E5 domain, provides a link between DNA damage and repair during CSR.


Journal of Immunology | 2003

V(D)J Recombination Frequencies Can Be Profoundly Affected by Changes in the Spacer Sequence

Alina Montalbano; Kisani M. Ogwaro; Alan Tang; Adam G. W. Matthews; Mani Larijani; Marjorie A. Oettinger; Ann J. Feeney

Each V, D, and J gene segment is flanked by a recombination signal sequence (RSS), composed of a conserved heptamer and nonamer separated by a 12- or 23-bp spacer. Variations from consensus in the heptamer or nonamer at specific positions can dramatically affect recombination frequency, but until recently, it had been generally held that only the length of the spacer, but not its sequence, affects the efficacy of V(D)J recombination. In this study, we show several examples in which the spacer sequence can significantly affect recombination frequencies. We show that the difference in spacer sequence alone of two VHS107 genes affects recombination frequency in recombination substrates to a similar extent as the bias observed in vivo. We show that individual positions in the spacer can affect recombination frequency, and those positions can often be predicted by their frequency in a database of RSS. Importantly, we further show that a spacer sequence that has an infrequently observed nucleotide at each position is essentially unable to support recombination in an extrachromosmal substrate assay, despite being flanked by a consensus heptamer and nonamer. This infrequent spacer sequence RSS shows only a 2-fold reduction of binding of RAG proteins, but the in vitro cleavage of this RSS is ∼9-fold reduced compared with a good RSS. These data demonstrate that the spacer sequence should be considered to play an important role in the recombination efficacy of an RSS, and that the effect of the spacer occurs primarily subsequent to RAG binding.


Nucleic Acids Research | 2013

Zebrafish AID is capable of deaminating methylated deoxycytidines

Hala Abdouni; Justin J. King; Mussa Suliman; Matthew Quinlan; Heather Fifield; Mani Larijani

Activation-induced cytidine deaminase (AID) deaminates deoxycytidine (dC) to deoxyuracil (dU) at immunoglobulin loci in B lymphocytes to mediate secondary antibody diversification. Recently, AID has been proposed to also mediate epigenetic reprogramming by demethylating methylated cytidines (mC) possibly through deamination. AID overexpression in zebrafish embryos was shown to promote genome demethylation through G:T lesions, implicating a deamination-dependent mechanism. We and others have previously shown that mC is a poor substrate for human AID. Here, we examined the ability of bony fish AID to deaminate mC. We report that zebrafish AID was unique among all orthologs in that it efficiently deaminates mC. Analysis of domain-swapped and mutant AID revealed that mC specificity is independent of the overall high-catalytic efficiency of zebrafish AID. Structural modeling with or without bound DNA suggests that efficient deamination of mC by zebrafish AID is likely not due to a larger catalytic pocket allowing for better fit of mC, but rather because of subtle differences in the flexibility of its structure.


Retrovirology | 2012

Emerging complexities of APOBEC3G action on immunity and viral fitness during HIV infection and treatment.

Mahdis Monajemi; Claire F. Woodworth; Jessica Benkaroun; Michael Grant; Mani Larijani

The enzyme APOBEC3G (A3G) mutates the human immunodeficiency virus (HIV) genome by converting deoxycytidine (dC) to deoxyuridine (dU) on minus strand viral DNA during reverse transcription. A3G restricts viral propagation by degrading or incapacitating the coding ability of the HIV genome. Thus, this enzyme has been perceived as an innate immune barrier to viral replication whilst adaptive immunity responses escalate to effective levels. The discovery of A3G less than a decade ago led to the promise of new anti-viral therapies based on manipulation of its cellular expression and/or activity. The rationale for therapeutic approaches has been solidified by demonstration of the effectiveness of A3G in diminishing viral replication in cell culture systems of HIV infection, reports of its mutational footprint in virions from patients, and recognition of its unusually robust enzymatic potential in biochemical studies in vitro. Despite its effectiveness in various experimental systems, numerous recent studies have shown that the ability of A3G to combat HIV in the physiological setting is severely limited. In fact, it has become apparent that its mutational activity may actually enhance viral fitness by accelerating HIV evolution towards the evasion of both anti-viral drugs and the immune system. This body of work suggests that the role of A3G in HIV infection is more complex than heretofore appreciated and supports the hypothesis that HIV has evolved to exploit the action of this host factor. Here we present an overview of recent data that bring to light historical overestimation of A3G’s standing as a strictly anti-viral agent. We discuss the limitations of experimental systems used to assess its activities as well as caveats in data interpretation.


Seminars in Immunology | 2012

The biochemistry of activation-induced deaminase and its physiological functions.

Mani Larijani; Alberto Martin

Activation-induced deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination (CSR) by inducing mutations and double-strand breaks at the immunoglobulin (Ig) locus in B cells. AID converts deoxycytidine (dC) to deoxyuridine (dU) in single-stranded DNA (ssDNA). This deamination reaction is enzymatically straightforward, but ultimately results in diverse biological consequences. Here, we review the enzymatic features of AID, such as the parameters that govern substrate binding and catalysis. We discuss how these properties of AID relate to secondary antibody diversification processes and the manners in which they may regulate the targeting of AID to various loci. Based on the current data on AID and other related deaminases, we propose a 3-dimensional structure for AID and how this model provides clues into AIDs catalytic mechanism.

Collaboration


Dive into the Mani Larijani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Justin J. King

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heather Fifield

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Grant

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

Emma M. Quinlan

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

Hala Abdouni

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

Calvin C. K. Yu

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Claire F. Woodworth

Memorial University of Newfoundland

View shared research outputs
Researchain Logo
Decentralizing Knowledge