Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mani Roshan-Moniri is active.

Publication


Featured researches published by Mani Roshan-Moniri.


Journal of Biological Chemistry | 2014

Selectively Targeting the DNA-binding Domain of the Androgen Receptor as a Prospective Therapy for Prostate Cancer

Kush Dalal; Mani Roshan-Moniri; Aishwariya Sharma; Huifang Li; Fuqiang Ban; Mohamed Hessein; Michael Hsing; Kriti Singh; Eric Leblanc; Scott M. Dehm; Emma S. Guns; Artem Cherkasov; Paul S. Rennie

Background: The androgen receptor (AR) is a transcription factor regulating progression of prostate cancer. Results: Developed compounds inhibit AR transcriptional activity in vitro and in vivo by selective targeting of the AR-DNA-binding domain (DBD). Conclusion: By targeting the DBD, the compounds differ from conventional anti-androgens. Significance: Anti-androgens with a novel mechanism of action have the potential to treat recurrent prostate cancer. The androgen receptor (AR) is a transcription factor that has a pivotal role in the occurrence and progression of prostate cancer. The AR is activated by androgens that bind to its ligand-binding domain (LBD), causing the transcription factor to enter the nucleus and interact with genes via its conserved DNA-binding domain (DBD). Treatment for prostate cancer involves reducing androgen production or using anti-androgen drugs to block the interaction of hormones with the AR-LBD. Eventually the disease changes into a castration-resistant form of PCa where LBD mutations render anti-androgens ineffective or where constitutively active AR splice variants, lacking the LBD, become overexpressed. Recently, we identified a surfaced exposed pocket on the AR-DBD as an alternative drug-target site for AR inhibition. Here, we demonstrate that small molecules designed to selectively bind the pocket effectively block transcriptional activity of full-length and splice variant AR forms at low to sub-micromolar concentrations. The inhibition is lost when residues involved in drug interactions are mutated. Furthermore, the compounds did not impede nuclear localization of the AR and blocked interactions with chromatin, indicating the interference of DNA binding with the nuclear form of the transcription factor. Finally, we demonstrate the inhibition of gene expression and tumor volume in mouse xenografts. Our results indicate that the AR-DBD has a surface site that can be targeted to inhibit all forms of the AR, including enzalutamide-resistant and constitutively active splice variants and thus may serve as a potential avenue for the treatment of recurrent and metastatic prostate cancer.


Oncotarget | 2016

Exosomes confer pro-survival signals to alter the phenotype of prostate cells in their surrounding environment

Elham Hosseini-Beheshti; Wendy Choi; Louis-Bastien Weiswald; Geetanjali Kharmate; Mazyar Ghaffari; Mani Roshan-Moniri; Mohamed D. Hassona; Leslie G. Chan; Mei Yieng Chin; Isabella T. Tai; Paul S. Rennie; Ladan Fazli; Emma S. Guns

Prostate cancer (PCa) is the most frequently diagnosed cancer in men. Current research on tumour-related extracellular vesicles (EVs) suggests that exosomes play a significant role in paracrine signaling pathways, thus potentially influencing cancer progression via multiple mechanisms. In fact, during the last decade numerous studies have revealed the role of EVs in the progression of various pathological conditions including cancer. Moreover, differences in the proteomic, lipidomic, and cholesterol content of exosomes derived from PCa cell lines versus benign prostate cell lines confirm that exosomes could be excellent biomarker candidates. As such, as part of an extensive proteomic analysis using LCMS we previously described a potential role of exosomes as biomarkers for PCa. Current evidence suggests that uptake of EVs into the local tumour microenvironment encouraging us to further examine the role of these vesicles in distinct mechanisms involved in the progression of PCa and castration resistant PCa. For the purpose of this study, we hypothesized that exosomes play a pivotal role in cell-cell communication in the local tumour microenvironment, conferring activation of numerous survival mechanisms during PCa progression and development of therapeutic resistance. Our in vitro results demonstrate that PCa derived exosomes significantly reduce apoptosis, increase cancer cell proliferation and induce cell migration in LNCaP and RWPE-1 cells. In conjunction with our in vitro findings, we have also demonstrated that exosomes increased tumor volume and serum PSA levels in vivo when xenograft bearing mice were administered DU145 cell derived exosomes intravenously. This research suggests that, regardless of androgen receptor phenotype, exosomes derived from PCa cells significantly enhance multiple mechanisms that contribute to PCa progression.


Cancer Treatment Reviews | 2014

Orphan nuclear receptors as drug targets for the treatment of prostate and breast cancers

Mani Roshan-Moniri; Michael Hsing; Miriam S. Butler; Artem Cherkasov; Paul S. Rennie

Nuclear receptors (NRs), a family of 48 transcriptional factors, have been studied intensively for their roles in cancer development and progression. The presence of distinctive ligand binding sites capable of interacting with small molecules has made NRs attractive targets for developing cancer therapeutics. In particular, a number of drugs have been developed over the years to target human androgen- and estrogen receptors for the treatment of prostate cancer and breast cancer. In contrast, orphan nuclear receptors (ONRs), which in many cases lack known biological functions or ligands, are still largely under investigated. This review is a summary on ONRs that have been implicated in prostate and breast cancers, specifically retinoic acid-receptor-related orphan receptors (RORs), liver X receptors (LXRs), chicken ovalbumin upstream promoter transcription factors (COUP-TFs), estrogen related receptors (ERRs), nerve growth factor 1B-like receptors, and ‘‘dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1’’ (DAX1). Discovery and development of small molecules that can bind at various functional sites on these ONRs will help determine their biological functions. In addition, these molecules have the potential to act as prototypes for future drug development. Ultimately, the therapeutic value of targeting the ONRs may go well beyond prostate and breast cancers.


Oncotarget | 2017

Therapy-induced developmental reprogramming of prostate cancer cells and acquired therapy resistance

Mannan Nouri; Amy A. Lubik; Na Li; Brett G. Hollier; Mandeep Takhar; Manuel Altimirano-Dimas; Mengqian Chen; Mani Roshan-Moniri; Miriam S. Butler; Melanie Lehman; Jennifer L. Bishop; Sarah Truong; Shih Chieh Huang; Dawn R. Cochrane; Michael E. Cox; Colin Collins; Martin Gleave; Nicholas Erho; Mohamed Alshalafa; Elai Davicioni; Colleen C. Nelson; Sheryl Gregory-Evans; R. Jeffrey Karnes; Robert B. Jenkins; Eric A. Klein; Ralph Buttyan

Treatment-induced neuroendocrine transdifferentiation (NEtD) complicates therapies for metastatic prostate cancer (PCa). Based on evidence that PCa cells can transdifferentiate to other neuroectodermally-derived cell lineages in vitro, we proposed that NEtD requires first an intermediary reprogramming to metastable cancer stem-like cells (CSCs) of a neural class and we demonstrate that several different AR+/PSA+ PCa cell lines were efficiently reprogrammed to, maintained and propagated as CSCs by growth in androgen-free neural/neural crest (N/NC) stem medium. Such reprogrammed cells lost features of prostate differentiation; gained features of N/NC stem cells and tumor-initiating potential; were resistant to androgen signaling inhibition; and acquired an invasive phenotype in vitro and in vivo. When placed back into serum-containing mediums, reprogrammed cells could be re-differentiated to N-/NC-derived cell lineages or return back to an AR+ prostate-like state. Once returned, the AR+ cells were resistant to androgen signaling inhibition. Acute androgen deprivation or anti-androgen treatment in serum-containing medium led to the transient appearance of a sub-population of cells with similar characteristics. Finally, a 132 gene signature derived from reprogrammed PCa cell lines distinguished tumors from PCa patients with adverse outcomes. This model may explain neural manifestations of PCa associated with lethal disease. The metastable nature of the reprogrammed stem-like PCa cells suggests that cycles of PCa cell reprogramming followed by re-differentiation may support disease progression and therapeutic resistance. The ability of a gene signature from reprogrammed PCa cells to identify tumors from patients with metastasis or PCa-specific mortality implies that developmental reprogramming is linked to aggressive tumor behaviors.


Molecular Cancer Therapeutics | 2017

Bypassing drug-resistance mechanisms of prostate cancer with small-molecules that target androgen receptor chromatin interactions

Kush Dalal; Meixia Che; Nanette L. S. Que; Aishwariya Sharma; Rendong Yang; Nada Lallous; Hendrik Borgmann; Deniz Ozistanbullu; Ronnie Tse; Fuqiang Ban; Huifang Li; Kevin Tam; Mani Roshan-Moniri; Eric Leblanc; Martin Gleave; Daniel T. Gewirth; Scott M. Dehm; Artem Cherkasov; Paul S. Rennie

Human androgen receptor (AR) is a hormone-activated transcription factor that is an important drug target in the treatment of prostate cancer. Current small-molecule AR antagonists, such as enzalutamide, compete with androgens that bind to the steroid-binding pocket of the AR ligand–binding domain (LBD). In castration-resistant prostate cancer (CRPC), drug resistance can manifest through AR-LBD mutations that convert AR antagonists into agonists, or by expression of AR variants lacking the LBD. Such treatment resistance underscores the importance of novel ways of targeting the AR. Previously, we reported the development of a series of small molecules that were rationally designed to selectively target the AR DNA-binding domain (DBD) and, hence, to directly interfere with AR–DNA interactions. In the current work, we have confirmed that the lead AR DBD inhibitor indeed directly interacts with the AR-DBD and tested that substance across multiple clinically relevant CRPC cell lines. We have also performed a series of experiments that revealed that genome-wide chromatin binding of AR was dramatically impacted by the lead compound (although with lesser effect on AR variants). Collectively, these observations confirm the novel mechanism of antiandrogen action of the developed AR-DBD inhibitors, establishing proof of principle for targeting DBDs of nuclear receptors in endocrine cancers. Mol Cancer Ther; 16(10); 2281–91. ©2017 AACR.


Oncogene | 2017

Neuropilin-1 is upregulated in the adaptive response of prostate tumors to androgen-targeted therapies and is prognostic of metastatic progression and patient mortality

Brian Wan-Chi Tse; Marianna Volpert; Ellca Ratther; Nataly Stylianou; Mannan Nouri; K McGowan; Melanie Lehman; Stephen McPherson; Mani Roshan-Moniri; M S Butler; C.Y. Gregory-Evans; Jacqui A. McGovern; Rajdeep Das; Mandeep Takhar; Nicholas Erho; Mohammed Alshalafa; Elai Davicioni; Edward M. Schaeffer; Robert B. Jenkins; Ashley E. Ross; R.J. Karnes; Robert B. Den; Ladan Fazli; Philip A. Gregory; Martin Gleave; Elizabeth D. Williams; Paul S. Rennie; Ralph Buttyan; Jennifer H. Gunter; Luke A. Selth

Recent evidence has implicated the transmembrane co-receptor neuropilin-1 (NRP1) in cancer progression. Primarily known as a regulator of neuronal guidance and angiogenesis, NRP1 is also expressed in multiple human malignancies, where it promotes tumor angiogenesis. However, non-angiogenic roles of NRP1 in tumor progression remain poorly characterized. In this study, we define NRP1 as an androgen-repressed gene whose expression is elevated during the adaptation of prostate tumors to androgen-targeted therapies (ATTs), and subsequent progression to metastatic castration-resistant prostate cancer (mCRPC). Using short hairpin RNA (shRNA)-mediated suppression of NRP1, we demonstrate that NRP1 regulates the mesenchymal phenotype of mCRPC cell models and the invasive and metastatic dissemination of tumor cells in vivo. In patients, immunohistochemical staining of tissue microarrays and mRNA expression analyses revealed a positive association between NRP1 expression and increasing Gleason grade, pathological T score, positive lymph node status and primary therapy failure. Furthermore, multivariate analysis of several large clinical prostate cancer (PCa) cohorts identified NRP1 expression at radical prostatectomy as an independent prognostic biomarker of biochemical recurrence after radiation therapy, metastasis and cancer-specific mortality. This study identifies NRP1 for the first time as a novel androgen-suppressed gene upregulated during the adaptive response of prostate tumors to ATTs and a prognostic biomarker of clinical metastasis and lethal PCa.


Oncotarget | 2017

Discovery and characterization of small molecules targeting the DNA-binding ETS domain of ERG in prostate cancer

Miriam S. Butler; Mani Roshan-Moniri; Michael Hsing; Desmond Lau; Ari Kim; Paul Yen; Marta Mroczek; Mannan Nouri; Scott Lien; Peter Axerio-Cilies; Kush Dalal; Clement Yau; Fariba Ghaidi; Yubin Guo; Takeshi Yamazaki; Sam Lawn; Martin Gleave; Cheryl Y. Gregory-Evans; Lawrence P. McIntosh; Michael E. Cox; Paul S. Rennie; Artem Cherkasov

Genomic alterations involving translocations of the ETS-related gene ERG occur in approximately half of prostate cancer cases. These alterations result in aberrant, androgen-regulated production of ERG protein variants that directly contribute to disease development and progression. This study describes the discovery and characterization of a new class of small molecule ERG antagonists identified through rational in silico methods. These antagonists are designed to sterically block DNA binding by the ETS domain of ERG and thereby disrupt transcriptional activity. We confirmed the direct binding of a lead compound, VPC-18005, with the ERG-ETS domain using biophysical approaches. We then demonstrated VPC-18005 reduced migration and invasion rates of ERG expressing prostate cancer cells, and reduced metastasis in a zebrafish xenograft model. These results demonstrate proof-of-principal that small molecule targeting of the ERG-ETS domain can suppress transcriptional activity and reverse transformed characteristics of prostate cancers aberrantly expressing ERG. Clinical advancement of the developed small molecule inhibitors may provide new therapeutic agents for use as alternatives to, or in combination with, current therapies for men with ERG-expressing metastatic castration-resistant prostate cancer.


Molecular Cancer Therapeutics | 2016

Targeting Binding Function-3 of the Androgen Receptor Blocks Its Co-Chaperone Interactions, Nuclear Translocation, and Activation

Nada Lallous; Eric Leblanc; Ravi Shashi Nayana Munuganti; Hassona; Nader Al Nakouzi; Shannon Awrey; Morin H; Mani Roshan-Moniri; Kriti Singh; Lawn S; Takeshi Yamazaki; Hans Adomat; Andre C; Mads Daugaard; Robert N. Young; Emma S. Guns; Paul S. Rennie; Artem Cherkasov

The development of new antiandrogens, such as enzalutamide, or androgen synthesis inhibitors like abiraterone has improved patient outcomes in the treatment of advanced prostate cancer. However, due to the development of drug resistance and tumor cell survival, a majority of these patients progress to the refractory state of castration-resistant prostate cancer (CRPC). Thus, newer therapeutic agents and a better understanding of their mode of action are needed for treating these CRPC patients. We demonstrated previously that targeting the Binding Function 3 (BF3) pocket of the androgen receptor (AR) has great potential for treating patients with CRPC. Here, we explore the functional activity of this site by using an advanced BF3-specific small molecule (VPC-13566) that was previously reported to effectively inhibit AR transcriptional activity and to displace the BAG1L peptide from the BF3 pocket. We show that VPC-13566 inhibits the growth of various prostate cancer cell lines, including an enzalutamide-resistant cell line, and reduces the growth of AR-dependent prostate cancer xenograft tumors in mice. Importantly, we have used this AR-BF3 binder as a chemical probe and identified a co-chaperone, small glutamine-rich tetratricopeptide repeat (TPR)-containing protein alpha (SGTA), as an important AR-BF3 interacting partner. Furthermore, we used this AR-BF3–directed small molecule to demonstrate that inhibition of AR activity through the BF3 functionality can block translocation of the receptor into the nucleus. These findings suggest that targeting the BF3 site has potential clinical importance, especially in the treatment of CRPC and provide novel insights on the functional role of the BF3 pocket. Mol Cancer Ther; 15(12); 2936–45. ©2016 AACR.


Journal of Cellular Physiology | 2016

Transcriptome‐Based Analysis of Molecular Pathways for Clusterin Functions in Kidney Cells

Ghida Dairi; Qiunong Guan; Mani Roshan-Moniri; Colin Collins; Christopher J. Ong; Martin Gleave; Christopher Y. Nguan; Caigan Du

Clusterin (CLU) is a chaperone‐like protein and plays a protective role against renal ischemia‐reperfusion injury (IRI); however, the molecular pathways for its functions in the kidney are not fully understood. This study was designed to investigate CLU‐mediating pathways in kidney cells by using bioinformatics analysis. CLU null renal tubular epithelial cells (TECs) expressing human CLU cDNA (TEC‐CLUhCLU) or empty vector (TEC‐CLU−/−) were exposed to normoxia or hypoxia (1% O2). Transcriptome profiling with a significant twofold change was performed using SurePrint G3 Mouse Gene Expression 8 × 60 K microarray, and the signaling pathways was ranked by using Ingenuity pathway analysis. Here, we showed that compared to CLU null controls, ectopic expression of human CLU in CLU null kidney cells promoted cell growth but inhibited migration in normoxia, and enhanced cell survival in hypoxia. CLU expression affected expression of 3864 transcripts (1893 up‐regulated) in normoxia and 3670 transcripts (1925 up‐regulated) in hypoxia. CLU functions in normoxia were associated mostly with AKT2/PPP2R2B‐dependent PI3K/AKT, PTEN, VEGF, and ERK/MAPK signaling and as well with GSK3B‐mediated cell cycle progression. In addition to unfolded protein response (UPR) and/or endoplasmic reticulum (ER) stress, CLU‐enhanced cell survival in hypoxia was also associated with PIK3CD/MAPK1‐dependent PI3K/AKT, HIF‐α, PTEN, VEGF, and ERK/MAPK signaling. In conclusion, our data showed that CLU functions in kidney cells were mainly mediated in a cascade manner by PI3K/AKT, PTEN, VEGF, and ERK/MAPK signaling, and specifically by activation of UPR/ER stress in hypoxia, providing new insights into the protective role of CLU in the kidney. J. Cell. Physiol. 231: 2628–2638, 2016.


Journal of Biological Chemistry | 2017

Erratum: Selectively targeting the DNA-binding domain of the androgen receptor as a prospective therapy for prostate cancer. (American Society for Biochemistry and Molecular Biology Inc. (2014) 289 (26417-26429) DOI: 10.1074/jbc.M114.553818)

Kush Dalal; Mani Roshan-Moniri; Aishwariya Sharma; Huifang Li; Fuqiang Ban; Mohamed D. Hassona; Michael Hsing; Kriti Singh; Eric Leblanc; Scott M. Dehm; Emma S. Guns; Artem Cherkasov; Paul S. Rennie

Based on misinterpretation of the NMR spectra provided by our chemical vendor, the structure of VPC-14449 should be corrected. VPC-14449 (4-(4-(4,5-bromo-1H-imidazol-1-yl)thiazol-2-yl)morpholine) should be replaced with VPC-14449 (4-(4-(2,4-dibromo-1H-imidazol-1-yl)thiazol2-yl)morpholine). In Fig. 1A, the graphical representation of VPC-14449 should be changed to the correct structure. Our industry partner synthesized the published VPC-14449 structure (4,5-bromo) and noticed that its NMR spectrum was different from that of our VPC-14449 stock synthesized by our chemical vendor. Upon synthesizing the correct structure (2,4-bromo), it was found that the NMR spectrum of the newly synthesized 2,4-bromo compound superimposed with the NMR spectrum of the compound supplied by our chemical vendor, establishing that the original compound used in this article was the 2,4-bromo version. In conclusion, our stock of VPC-14449 supplied by our chemical vendor and used in this article is (4-(4-(2,4-dibromo-1H-imidazol-1-yl)thiazol-2-yl)morpholine). This error does not affect the results or conclusions of this work, as we simply reported the incorrect structure of our compound. THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 292, NO. 10, p. 4359, March 10, 2017

Collaboration


Dive into the Mani Roshan-Moniri's collaboration.

Top Co-Authors

Avatar

Paul S. Rennie

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Artem Cherkasov

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Eric Leblanc

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Huifang Li

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Martin Gleave

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Michael Hsing

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Kush Dalal

Vancouver Prostate Centre

View shared research outputs
Top Co-Authors

Avatar

Emma S. Guns

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Fuqiang Ban

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Mannan Nouri

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge