Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manikandan Narayanan is active.

Publication


Featured researches published by Manikandan Narayanan.


Cell | 2013

Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease.

Bin Zhang; Chris Gaiteri; Liviu-Gabriel Bodea; Zhi Wang; Joshua McElwee; Alexei Podtelezhnikov; Chunsheng Zhang; Tao Xie; Linh Tran; Radu Dobrin; Eugene M. Fluder; Bruce E. Clurman; Stacey Melquist; Manikandan Narayanan; Christine Suver; Hardik Shah; Milind Mahajan; Tammy Gillis; Jayalakshmi S. Mysore; Marcy E. MacDonald; John Lamb; David A. Bennett; Cliona Molony; David J. Stone; Vilmundur Gudnason; Amanda J. Myers; Eric E. Schadt; Harald Neumann; Jun Zhu; Valur Emilsson

The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimers disease (LOAD), we constructed gene-regulatory networks in 1,647 postmortem brain tissues from LOAD patients and nondemented subjects, and we demonstrate that LOAD reconfigures specific portions of the molecular interaction structure. Through an integrative network-based approach, we rank-ordered these network structures for relevance to LOAD pathology, highlighting an immune- and microglia-specific module that is dominated by genes involved in pathogen phagocytosis, contains TYROBP as a key regulator, and is upregulated in LOAD. Mouse microglia cells overexpressing intact or truncated TYROBP revealed expression changes that significantly overlapped the human brain TYROBP network. Thus the causal network structure is a useful predictor of response to gene perturbations and presents a framework to test models of disease mechanisms underlying LOAD.


Cell | 2014

Global Analyses of Human Immune Variation Reveal Baseline Predictors of Postvaccination Responses

John S. Tsang; Pamela L. Schwartzberg; Yuri Kotliarov; Angélique Biancotto; Zhi Xie; Ronald N. Germain; Ena Wang; Matthew J. Olnes; Manikandan Narayanan; Hana Golding; Susan Moir; Howard B. Dickler; Shira Perl; Foo Cheung

A major goal of systems biology is the development of models that accurately predict responses to perturbation. Constructing such models requires the collection of dense measurements of system states, yet transformation of data into predictive constructs remains a challenge. To begin to model human immunity, we analyzed immune parameters in depth both at baseline and in response to influenza vaccination. Peripheral blood mononuclear cell transcriptomes, serum titers, cell subpopulation frequencies, and B cell responses were assessed in 63 individuals before and after vaccination and were used to develop a systematic framework to dissect inter- and intra-individual variation and build predictive models of postvaccination antibody responses. Strikingly, independent of age and pre-existing antibody titers, accurate models could be constructed using pre-perturbation cell populations alone, which were validated using independent baseline time points. Most of the parameters contributing to prediction delineated temporally stable baseline differences across individuals, raising the prospect of immune monitoring before intervention.


PLOS Computational Biology | 2009

Meta-analysis of Inter-species Liver Co-expression Networks Elucidates Traits Associated with Common Human Diseases

Kai Wang; Manikandan Narayanan; Hua Zhong; Martin Tompa; Eric E. Schadt; Jun Zhu

Co-expression networks are routinely used to study human diseases like obesity and diabetes. Systematic comparison of these networks between species has the potential to elucidate common mechanisms that are conserved between human and rodent species, as well as those that are species-specific characterizing evolutionary plasticity. We developed a semi-parametric meta-analysis approach for combining gene-gene co-expression relationships across expression profile datasets from multiple species. The simulation results showed that the semi-parametric method is robust against noise. When applied to human, mouse, and rat liver co-expression networks, our method out-performed existing methods in identifying gene pairs with coherent biological functions. We identified a network conserved across species that highlighted cell-cell signaling, cell-adhesion and sterol biosynthesis as main biological processes represented in genome-wide association study candidate gene sets for blood lipid levels. We further developed a heterogeneity statistic to test for network differences among multiple datasets, and demonstrated that genes with species-specific interactions tend to be under positive selection throughout evolution. Finally, we identified a human-specific sub-network regulated by RXRG, which has been validated to play a different role in hyperlipidemia and Type 2 diabetes between human and mouse. Taken together, our approach represents a novel step forward in integrating gene co-expression networks from multiple large scale datasets to leverage not only common information but also differences that are dataset-specific.


Molecular Systems Biology | 2014

Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases

Manikandan Narayanan; Jimmy Huynh; Kai Wang; Xia Yang; Seungyeul Yoo; Joshua McElwee; Bin Zhang; Chunsheng Zhang; John Lamb; Tao Xie; Christine Suver; Cliona Molony; Stacey Melquist; Andrew D. Johnson; Guoping Fan; David J. Stone; Eric E. Schadt; Patrizia Casaccia; Valur Emilsson; Jun Zhu

Using expression profiles from postmortem prefrontal cortex samples of 624 dementia patients and non‐demented controls, we investigated global disruptions in the co‐regulation of genes in two neurodegenerative diseases, late‐onset Alzheimers disease (AD) and Huntingtons disease (HD). We identified networks of differentially co‐expressed (DC) gene pairs that either gained or lost correlation in disease cases relative to the control group, with the former dominant for both AD and HD and both patterns replicating in independent human cohorts of AD and aging. When aligning networks of DC patterns and physical interactions, we identified a 242‐gene subnetwork enriched for independent AD/HD signatures. This subnetwork revealed a surprising dichotomy of gained/lost correlations among two inter‐connected processes, chromatin organization and neural differentiation, and included DNA methyltransferases, DNMT1 and DNMT3A, of which we predicted the former but not latter as a key regulator. To validate the inter‐connection of these two processes and our key regulator prediction, we generated two brain‐specific knockout (KO) mice and show that Dnmt1 KO signature significantly overlaps with the subnetwork (P = 3.1 × 10−12), while Dnmt3a KO signature does not (P = 0.017).


PLOS Computational Biology | 2010

Simultaneous Clustering of Multiple Gene Expression and Physical Interaction Datasets

Manikandan Narayanan; Adrian Vetta; Eric E. Schadt; Jun Zhu

Many genome-wide datasets are routinely generated to study different aspects of biological systems, but integrating them to obtain a coherent view of the underlying biology remains a challenge. We propose simultaneous clustering of multiple networks as a framework to integrate large-scale datasets on the interactions among and activities of cellular components. Specifically, we develop an algorithm JointCluster that finds sets of genes that cluster well in multiple networks of interest, such as coexpression networks summarizing correlations among the expression profiles of genes and physical networks describing protein-protein and protein-DNA interactions among genes or gene-products. Our algorithm provides an efficient solution to a well-defined problem of jointly clustering networks, using techniques that permit certain theoretical guarantees on the quality of the detected clustering relative to the optimal clustering. These guarantees coupled with an effective scaling heuristic and the flexibility to handle multiple heterogeneous networks make our method JointCluster an advance over earlier approaches. Simulation results showed JointCluster to be more robust than alternate methods in recovering clusters implanted in networks with high false positive rates. In systematic evaluation of JointCluster and some earlier approaches for combined analysis of the yeast physical network and two gene expression datasets under glucose and ethanol growth conditions, JointCluster discovers clusters that are more consistently enriched for various reference classes capturing different aspects of yeast biology or yield better coverage of the analysed genes. These robust clusters, which are supported across multiple genomic datasets and diverse reference classes, agree with known biology of yeast under these growth conditions, elucidate the genetic control of coordinated transcription, and enable functional predictions for a number of uncharacterized genes.


Cellular & Molecular Immunology | 2015

Lineage relationship of CD8+ T cell subsets is revealed by progressive changes in the epigenetic landscape

Joseph G. Crompton; Manikandan Narayanan; Suresh Cuddapah; Rahul Roychoudhuri; Yun Ji; Wenjing Yang; Shashank J. Patel; Madhusudhanan Sukumar; Douglas C. Palmer; Weiqun Peng; Ena Wang; Francesco M. Marincola; Christopher A. Klebanoff; Keji Zhao; John S. Tsang; Luca Gattinoni; Nicholas P. Restifo

To better elucidate epigenetic mechanisms that correlate with the dynamic gene expression program observed upon T-cell differentiation, we investigated the genomic landscape of histone modifications in naive and memory CD8+ T cells. Using a ChIP-Seq approach coupled with global gene expression profiling, we generated genome-wide histone H3 lysine 4 (H3K4me3) and H3 lysine 27 (H3K27me3) trimethylation maps in naive, T memory stem cells, central memory cells, and effector memory cells in order to gain insight into how histone architecture is remodeled during T cell differentiation. We show that H3K4me3 histone modifications are associated with activation of genes, while H3K27me3 is negatively correlated with gene expression at canonical loci and enhancers associated with T-cell metabolism, effector function, and memory. Our results also reveal histone modifications and gene expression signatures that distinguish the recently identified T memory stem cells from other CD8+ T-cell subsets. Taken together, our results suggest that CD8+ lymphocytes undergo chromatin remodeling in a progressive fashion. These findings have major implications for our understanding of peripheral T-cell ontogeny and the formation of immunological memory.


Molecular & Cellular Proteomics | 2014

Characterization of functional reprogramming during osteoclast development using quantitative proteomics and mRNA profiling

Eunkyung An; Manikandan Narayanan; Nathan P. Manes; Aleksandra Nita-Lazar

In addition to forming macrophages and dendritic cells, monocytes in adult peripheral blood retain the ability to develop into osteoclasts, mature bone-resorbing cells. The extensive morphological and functional transformations that occur during osteoclast differentiation require substantial reprogramming of gene and protein expression. Here we employ -omic-scale technologies to examine in detail the molecular changes at discrete developmental stages in this process (precursor cells, intermediate osteoclasts, and multinuclear osteoclasts), quantitatively comparing their transcriptomes and proteomes. The data have been deposited to the ProteomeXchange with identifier PXD000471. Our analysis identified mitochondrial changes, along with several alterations in signaling pathways, as central to the development of mature osteoclasts, while also confirming changes in pathways previously implicated in osteoclast biology. In particular, changes in the expression of proteins involved in metabolism and redirection of energy flow from basic cellular function toward bone resorption appeared to play a key role in the switch from monocytic immune system function to specialized bone-turnover function. These findings provide new insight into the differentiation program involved in the generation of functional osteoclasts.


Neurobiology of Disease | 2016

Equilibrative Nucleoside Transporter ENT1 as a Biomarker of Huntington Disease

Xavier Guitart; Jordi Bonaventura; William Rea; Marco Orrú; Lucrezia Cellai; Ilaria Dettori; Felicita Pedata; Marc Brugarolas; Antonio Cortés; Vicent Casadó; Ching-Pang Chang; Manikandan Narayanan; Yijuang Chern; Sergi Ferré

The initial goal of this study was to investigate alterations in adenosine A2A receptor (A2AR) density or function in a rat model of Huntington disease (HD) with reported insensitivity to an A2AR antagonist. Unsuspected negative results led to the hypothesis of a low striatal adenosine tone and to the search for the mechanisms involved. Extracellular striatal concentrations of adenosine were measured with in vivo microdialysis in two rodent models of early neuropathological stages of HD disease, the Tg51 rat and the zQ175 knock-in mouse. In view of the crucial role of the equilibrative nucleoside transporter (ENT1) in determining extracellular content of adenosine, the binding properties of the ENT1 inhibitor [3H]-S-(4-Nitrobenzyl)-6-thioinosine were evaluated in zQ175 mice and the differential expression and differential coexpression patterns of the ENT1 gene (SLC29A1) were analyzed in a large human cohort of HD disease and controls. Extracellular striatal levels of adenosine were significantly lower in both animal models as compared with control littermates and striatal ENT1 binding sites were significantly upregulated in zQ175 mice. ENT1 transcript was significantly upregulated in HD disease patients at an early neuropathological severity stage, but not those with a higher severity stage, relative to non-demented controls. ENT1 transcript was differentially coexpressed (gained correlations) with several other genes in HD disease subjects compared to the control group. The present study demonstrates that ENT1 and adenosine constitute biomarkers of the initial stages of neurodegeneration in HD disease and also predicts that ENT1 could constitute a new therapeutic target to delay the progression of the disease.


PLOS Computational Biology | 2016

Robust Inference of Cell-to-Cell Expression Variations from Single- and K-Cell Profiling.

Manikandan Narayanan; Andrew J. Martins; John S. Tsang

Quantifying heterogeneity in gene expression among single cells can reveal information inaccessible to cell-population averaged measurements. However, the expression level of many genes in single cells fall below the detection limit of even the most sensitive technologies currently available. One proposed approach to overcome this challenge is to measure random pools of k cells (e.g., 10) to increase sensitivity, followed by computational “deconvolution” of cellular heterogeneity parameters (CHPs), such as the biological variance of single-cell expression levels. Existing approaches infer CHPs using either single-cell or k-cell data alone, and typically within a single population of cells. However, integrating both single- and k-cell data may reap additional benefits, and quantifying differences in CHPs across cell populations or conditions could reveal novel biological information. Here we present a Bayesian approach that can utilize single-cell, k-cell, or both simultaneously to infer CHPs within a single condition or their differences across two conditions. Using simulated as well as experimentally generated single- and k-cell data, we found situations where each data type would offer advantages, but using both together can improve precision and better reconcile CHP information contained in single- and k-cell data. We illustrate the utility of our approach by applying it to jointly generated single- and k-cell data to reveal CHP differences in several key inflammatory genes between resting and inflammatory cytokine-activated human macrophages, delineating differences in the distribution of ‘ON’ versus ‘OFF’ cells and in continuous variation of expression level among cells. Our approach thus offers a practical and robust framework to assess and compare cellular heterogeneity within and across biological conditions using modern multiplexed technologies.


Journal of Graph Algorithms and Applications | 2014

The Complexity of the Simultaneous Cluster Problem

Zhentao Li; Manikandan Narayanan; Adrian Vetta

We study clustering over multiple graphs each encoding a distinct set of similarity relationships (edges) over the same set of objects (nodes) where the aim is to identify clusters that are supported across the collection of graphs. This problem of simultaneous clustering is readily motivated by the recent deluge of datasets in several domains (including the biological sciences, social sciences, and marketing), where the same objects are repeatedly measured in different conditions, populations or time points. Whilst there has been a vast amount of heuristic work on practical simultaneous clustering problems, little is known on the theoretical side – we present theoretical results that help explain why such heuristics typically come without quantitative guarantees. We give algorithmic and complexity results for simultaneous clustering using two standard measures on clustering quality: density and connectivity. Specifically, we focus on the basic problem of finding a single cluster (rather than an entire clustering) that is simultaneously of high quality in every graph. When the quality of a cluster is its minimum density over all graphs, we show the problem is not approximable within a factor of 2 1−e , unless NP ⊆ DTIME(n). Furthermore, this problem appears very difficult even when there are just two graphs; the resulting problem is approximately as hard as the problem of finding a dense subgraph on at most k vertices. When cluster quality is a fixed connectivity requirement between terminals within the cluster, there are two natural optimization problems: a maximization version (find a good quality cluster with as many terminals as possible) and a minimization version (find a good quality cluster that is as small as possible). We show that the maximization problem is tractable in polynomial time for any fixed connectivity requirement k. On the other hand the minimization problem is hard to approximate within a factor of 2 1−e , unless NP ⊆ DTIME(n). The number of graphs in our reduction depends on n. If instead the number of graphs is fixed, we show there is an e > 0 for which the minimization problem is not approximable within g1/2−e for any fixed number g of graphs unless NP = ZPP . These hardness results for the minimization problem hold even in the simple cases where the connectivity requirement is one and there are either just two terminal nodes or every node is a terminal node. We remark that our results extend to case where more robust variants of the quality measure are used.

Collaboration


Dive into the Manikandan Narayanan's collaboration.

Top Co-Authors

Avatar

John S. Tsang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jun Zhu

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Eric E. Schadt

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Martins

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bin Zhang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge