Manila Deiana
University of Cagliari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manila Deiana.
Nature Genetics | 2001
Laura Crisponi; Manila Deiana; Angela Loi; Francesca Chiappe; Manuela Uda; Patrizia Amati; Luigi Bisceglia; Leopoldo Zelante; Ramaiah Nagaraja; Susanna Porcu; M. Serafina Ristaldi; Rosalia Marzella; Mariano Rocchi; Marc Nicolino; Anne Lienhardt-Roussie; Annie Nivelon; Alain Verloes; David Schlessinger; Paolo Gasparini; Dominique Bonneau; Antonio Cao; Giuseppe Pilia
In type I blepharophimosis/ptosis/epicanthus inversus syndrome (BPES), eyelid abnormalities are associated with ovarian failure. Type II BPES shows only the eyelid defects, but both types map to chromosome 3q23. We have positionally cloned a novel, putative winged helix/forkhead transcription factor gene, FOXL2, that is mutated to produce truncated proteins in type I families and larger proteins in type II. Consistent with an involvement in those tissues, FOXL2 is selectively expressed in the mesenchyme of developing mouse eyelids and in adult ovarian follicles; in adult humans, it appears predominantly in the ovary. FOXL2 represents a candidate gene for the polled/intersex syndrome XX sex-reversal goat.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Manuela Uda; Renzo Galanello; Serena Sanna; Guillaume Lettre; Vijay G. Sankaran; Wei-Min Chen; Gianluca Usala; Fabio Busonero; Andrea Maschio; Giuseppe Albai; Maria Grazia Piras; Natascia Sestu; Sandra Lai; Mariano Dei; Antonella Mulas; Laura Crisponi; Silvia Naitza; Isadora Asunis; Manila Deiana; Ramaiah Nagaraja; Lucia Perseu; Stefania Satta; Maria Dolores Cipollina; Carla Sollaino; Paolo Moi; Joel N. Hirschhorn; Stuart H. Orkin; Gonçalo R. Abecasis; David Schlessinger; Antonio Cao
β-Thalassemia and sickle cell disease both display a great deal of phenotypic heterogeneity, despite being generally thought of as simple Mendelian diseases. The reasons for this are not well understood, although the level of fetal hemoglobin (HbF) is one well characterized ameliorating factor in both of these conditions. To better understand the genetic basis of this heterogeneity, we carried out genome-wide scans with 362,129 common SNPs on 4,305 Sardinians to look for genetic linkage and association with HbF levels, as well as other red blood cell-related traits. Among major variants affecting HbF levels, SNP rs11886868 in the BCL11A gene was strongly associated with this trait (P < 10−35). The C allele frequency was significantly higher in Sardinian individuals with elevated HbF levels, detected by screening for β-thalassemia, and patients with attenuated forms of β-thalassemia vs. those with thalassemia major. We also show that the same BCL11A variant is strongly associated with HbF levels in a large cohort of sickle cell patients. These results indicate that BCL11A variants, by modulating HbF levels, act as an important ameliorating factor of the β-thalassemia phenotype, and it is likely they could help ameliorate other hemoglobin disorders. We expect our findings will help to characterize the molecular mechanisms of fetal globin regulation and could eventually contribute to the development of new therapeutic approaches for β-thalassemia and sickle cell anemia.
Human Genetics | 1996
Georgios Loudianos; Valeria Dessi; Andrea Angius; Mario Lovicu; Angela Loi; Manila Deiana; Nejat Akar; Pietro Vajro; Annalena Figus; Antonio Cao; Mario Pirastu
Abstract This study reports 12 novel mutations of the Wilson disease (WD) gene which have been detected by the molecular analysis of 29 patients of Mediterranean descent carrying uncommon chromosomal haplotypes at the WD locus. These mutations include two nonsense, one splice site and nine missense. The missense mutations lie in regions of the WD gene critical for its function, such as the transmembrane region, the transduction domain and the ATP loop and ATP-binding domain, indicating that they are disease-causing mutations. These new findings improve our knowledge for the role played by functional domains on the ATP7B function.
European Journal of Human Genetics | 2011
Jana Herholz; Alessandra Meloni; Mara Marongiu; Francesca Chiappe; Manila Deiana; Carmen Roche Herrero; Giuseppe Zampino; Hanan Hamamy; Yusra Zalloum; Per Erik Waaler; Giangiorgio Crisponi; Laura Crisponi; Frank Rutsch
Crisponi syndrome (CS) and cold-induced sweating syndrome type 1 (CISS1) are disorders caused by mutations in CRLF1. The two syndromes share clinical characteristics, such as dysmorphic features, muscle contractions, scoliosis and cold-induced sweating, with CS patients showing a severe clinical course in infancy involving hyperthermia, associated with death in most cases in the first years of life. To evaluate a potential genotype/phenotype correlation and whether CS and CISS1 represent two allelic diseases or manifestations at different ages of the same disorder, we carried out a detailed clinical analysis of 19 patients carrying mutations in CRLF1. We studied the functional significance of the mutations found in CRLF1, providing evidence that phenotypic severity of the two disorders mainly depends on altered kinetics of secretion of the mutated CRLF1 protein. On the basis of these findings, we believe that the two syndromes, CS and CISS1, represent manifestations of the same disorder, with different degrees of severity. We suggest renaming the two genetic entities CS and CISS1 with the broader term of Sohar–Crisponi syndrome.
PLOS ONE | 2010
Mara Marongiu; Manila Deiana; Alessandra Meloni; Loredana Marcia; Alessandro Puddu; Antonio Cao; David Schlessinger; Laura Crisponi
The FOXL2 forkhead transcription factor is expressed in ovarian granulosa cells, and mutated FOXL2 causes the blepharophimosis, ptosis and epicanthus inversus syndrome (BPES) and predisposes to premature ovarian failure. Inactivation of Foxl2 in mice demonstrated its indispensability for female gonadal sex determination and ovary development and revealed its antagonism of Sox9, the effector of male testis development. To help to define the regulatory activities of FOXL2, we looked for interacting proteins. Based on yeast two-hybrid screening, we found that FOXL2 interacts with PIAS1 and UBC9, both parts of the sumoylation machinery. We showed that human FOXL2 is sumoylated in transfected cell lines, and that endogenous mouse Foxl2 is comparably sumoylated. This modification changes its cellular localization, stability and transcriptional activity. It is intriguing that similar sumoylation and regulatory consequences have also been reported for SOX9, the male counterpart of FOXL2 in somatic gonadal tissues.
American Journal of Human Genetics | 2016
Andrea Angius; Paolo Uva; Insa Buers; Manuela Oppo; Alessandro Puddu; Stefano Onano; Ivana Persico; Angela Loi; Loredana Marcia; Wolfgang Höhne; Gianmauro Cuccuru; Giorgio Fotia; Manila Deiana; Mara Marongiu; Hatice Tuba Atalay; Sibel İnan; Osama El Assy; Leo M.E. Smit; Ilyas Okur; Koray Boduroglu; Gülen Eda Utine; Esra Kilic; Giuseppe Zampino; Giangiorgio Crisponi; Laura Crisponi; Frank Rutsch
Crisponi syndrome (CS)/cold-induced sweating syndrome type 1 (CISS1) is a very rare autosomal-recessive disorder characterized by a complex phenotype with high neonatal lethality, associated with the following main clinical features: hyperthermia and feeding difficulties in the neonatal period, scoliosis, and paradoxical sweating induced by cold since early childhood. CS/CISS1 can be caused by mutations in cytokine receptor-like factor 1 (CRLF1). However, the physiopathological role of CRLF1 is still poorly understood. A subset of CS/CISS1 cases remain yet genetically unexplained after CRLF1 sequencing. In five of them, exome sequencing and targeted Sanger sequencing identified four homozygous disease-causing mutations in kelch-like family member 7 (KLHL7), affecting the Kelch domains of the protein. KLHL7 encodes a BTB-Kelch-related protein involved in the ubiquitination of target proteins for proteasome-mediated degradation. Mono-allelic substitutions in other domains of KLHL7 have been reported in three families affected by a late-onset form of autosomal-dominant retinitis pigmentosa. Retinitis pigmentosa was also present in two surviving children reported here carrying bi-allelic KLHL7 mutations. KLHL7 mutations are thus associated with a more severe phenotype in recessive than in dominant cases. Although these data further support the pathogenic role of KLHL7 mutations in a CS/CISS1-like phenotype, they do not explain all their clinical manifestations and highlight the high phenotypic heterogeneity associated with mutations in KLHL7.
BMC Developmental Biology | 2015
Mara Marongiu; Loredana Marcia; Emanuele Pelosi; Mario Lovicu; Manila Deiana; Yonqing Zhang; Alessandro Puddu; Angela Loi; Manuela Uda; Antonino Forabosco; David Schlessinger; Laura Crisponi
BackgroundHaploinsufficiency of the FOXL2 transcription factor in humans causes Blepharophimosis/Ptosis/Epicanthus Inversus syndrome (BPES), characterized by eyelid anomalies and premature ovarian failure. Mice lacking Foxl2 recapitulate human eyelid/forehead defects and undergo female gonadal dysgenesis. We report here that mice lacking Foxl2 also show defects in postnatal growth and embryonic bone and cartilage formation.MethodsFoxl2−/− male mice at different stages of development have been characterized and compared to wild type. Body length and weight were measured and growth curves were created. Skeletons were stained with alcian blue and/or alizarin red. Bone and cartilage formation was analyzed by Von Kossa staining and immunofluorescence using anti-FOXL2 and anti-SOX9 antibodies followed by confocal microscopy. Genes differentially expressed in skull vaults were evaluated by microarray analysis. Analysis of the GH/IGF1 pathway was done evaluating the expression of several hypothalamic-pituitary-bone axis markers by RT-qPCR.ResultsCompared to wild-type, Foxl2 null mice are smaller and show skeletal abnormalities and defects in cartilage and bone mineralization, with down-regulation of the GH/IGF1 axis. Consistent with these effects, we find FOXL2 expressed in embryos at 9.5 dpc in neural tube epithelium, in head mesenchyme near the neural tube, and within the first branchial arch; then, starting at 12.5 dpc, expressed in cartilaginous tissue; and at PO and P7, in hypothalamus.ConclusionsOur results support FOXL2 as a master transcription factor in a spectrum of developmental processes, including growth, cartilage and bone formation. Its action overlaps that of SOX9, though they are antagonistic in female vs male gonadal sex determination but conjoint in cartilage and skeletal development.
Developmental Biology | 2016
Mara Marongiu; Manila Deiana; Loredana Marcia; Andrea Sbardellati; Isadora Asunis; Alessandra Meloni; Andrea Angius; Roberto Cusano; Angela Loi; Francesca Crobu; Giorgio Fotia; Francesco Cucca; David Schlessinger; Laura Crisponi
FOXL2 belongs to the evolutionarily conserved forkhead box (FOX) superfamily and is a master transcription factor in a spectrum of developmental pathways, including ovarian and eyelid development and bone, cartilage and uterine maturation. To analyse its action, we searched for proteins that interact with FOXL2. We found that FOXL2 interacts with specific C-terminal propeptides of several fibrillary collagens. Because these propeptides can participate in feedback regulation of collagen biosynthesis, we inferred that FOXL2 could thereby affect the transcription of the cognate collagen genes. Focusing on COL1A2, we found that FOXL2 indeed affects collagen synthesis, by binding to a DNA response element located about 65Kb upstream of this gene. According to our hypothesis we found that in Foxl2(-/-) mouse ovaries, Col1a2 was elevated from birth to adulthood. The extracellular matrix (ECM) compartmentalizes the ovary during folliculogenesis, (with type I, type III and type IV collagens as primary components), and ECM composition changes during the reproductive lifespan. In Foxl2(-/-) mouse ovaries, in addition to up-regulation of Col1a2, Col3a1, Col4a1 and fibronectin were also upregulated, while laminin expression was reduced. Thus, by regulating levels of extracellular matrix components, FOXL2 may contribute to both ovarian histogenesis and the fibrosis attendant on depletion of the follicle reserve during reproductive aging and menopause.
PLOS Genetics | 2005
Giuseppe Pilia; Wei-Min Chen; Angelo Scuteri; Marco Orru; Giuseppe Albai; Mariano Dei; Sandra Lai; Gianluca Usala; Monica Lai; Paola Loi; Cinzia Mameli; Loredana Vacca; Manila Deiana; Nazario Olla; Marco Masala; Antonio Cao; Samer S. Najjar; Antonio Terracciano; Timur Nedorezov; Alexei A. Sharov; Alan B. Zonderman; Gonçalo R. Abecasis; Paul T. Costa; Edward G. Lakatta; David Schlessinger
Human Molecular Genetics | 2004
Manuela Uda; Chris Ottolenghi; Laura Crisponi; Jose Elias Garcia; Manila Deiana; Wendy L. Kimber; Antonino Forabosco; Antonio Cao; David Schlessinger; Giuseppe Pilia