Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manimalha Balasubramani is active.

Publication


Featured researches published by Manimalha Balasubramani.


Journal of Cell Biology | 2010

Regulation of the autophagy protein LC3 by phosphorylation

Salvatore J. Cherra; Scott M. Kulich; Guy Uechi; Manimalha Balasubramani; John Mountzouris; Billy W. Day; Charleen T. Chu

PKA puts the brakes on autophagy by inhibiting LC3 recruitment to autophagosomes.


Biomaterials | 2013

Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering.

Saik-Kia Goh; Suzanne Bertera; Phillip Olsen; Joseph Candiello; Willi Halfter; Guy Uechi; Manimalha Balasubramani; Scott A. Johnson; Brian M. Sicari; Elizabeth W. Kollar; Stephen F. Badylak; Ipsita Banerjee

Approximately 285 million people worldwide suffer from diabetes, with insulin supplementation as the most common treatment measure. Regenerative medicine approaches such as a bioengineered pancreas has been proposed as potential therapeutic alternatives. A bioengineered pancreas will benefit from the development of a bioscaffold that supports and enhances cellular function and tissue development. Perfusion-decellularized organs are a likely candidate for use in such scaffolds since they mimic compositional, architectural and biomechanical nature of a native organ. In this study, we investigate perfusion-decellularization of whole pancreas and the feasibility to recellularize the whole pancreas scaffold with pancreatic cell types. Our result demonstrates that perfusion-decellularization of whole pancreas effectively removes cellular and nuclear material while retaining intricate three-dimensional microarchitecture with perfusable vasculature and ductal network and crucial extracellular matrix (ECM) components. To mimic pancreatic cell composition, we recellularized the whole pancreas scaffold with acinar and beta cell lines and cultured up to 5 days. Our result shows successful cellular engraftment within the decellularized pancreas, and the resulting graft gave rise to strong up-regulation of insulin gene expression. These findings support biological utility of whole pancreas ECM as a biomaterials scaffold for supporting and enhancing pancreatic cell functionality and represent a step toward bioengineered pancreas using regenerative medicine approaches.


FEBS Journal | 2007

Biomechanical properties of native basement membranes

Joseph Candiello; Manimalha Balasubramani; Emmanuel M. Schreiber; Gregory J. Cole; Ulrike Mayer; Willi Halfter; Hai Lin

Basement membranes are sheets of extracellular matrix that separate epithelia from connective tissues and outline muscle fibers and the endothelial lining of blood vessels. A major function of basement membranes is to establish and maintain stable tissue borders, exemplified by frequent vascular breaks and a disrupted pial and retinal surface in mice with mutations or deletions of basement membrane proteins. To directly measure the biomechanical properties of basement membranes, chick and mouse inner limiting membranes were examined by atomic force microscopy. The inner limiting membrane is located at the retinal‐vitreal junction and its weakening due to basement membrane protein mutations leads to inner limiting membrane rupture and the invasion of retinal cells into the vitreous. Transmission electron microscopy and western blotting has shown that the inner limiting membrane has an ultrastructure and a protein composition typical for most other basement membranes and, thus, provides a suitable model for determining their biophysical properties. Atomic force microscopy measurements of native chick basement membranes revealed an increase in thickness from 137 nm at embryonic day 4 to 402 nm at embryonic day 9, several times thicker that previously determined by transmission electron microscopy. The change in basement membrane thickness was accompanied by a large increase in apparent Youngs modulus from 0.95 MPa to 3.30 MPa. The apparent Youngs modulus of the neonatal and adult mouse retinal basement membranes was in a similar range, with 3.81 MPa versus 4.07 MPa, respectively. These results revealed that native basement membranes are much thicker than previously determined. Their high mechanical strength explains why basement membranes are essential in stabilizing blood vessels, muscle fibers and the pial border of the central nervous system.


Journal of Biological Chemistry | 2013

Sirtuin 3 (SIRT3) Protein Regulates Long-chain Acyl-CoA Dehydrogenase by Deacetylating Conserved Lysines Near the Active Site

Sivakama S. Bharathi; Yuxun Zhang; Al-Walid Mohsen; Radha Uppala; Manimalha Balasubramani; Emanuel M. Schreiber; Guy Uechi; Megan E. Beck; Matthew J. Rardin; Jerry Vockley; Eric Verdin; Bradford W. Gibson; Matthew D. Hirschey; Eric S. Goetzman

Background: Reversible lysine acetylation regulates the fatty acid oxidation enzyme long-chain acyl-CoA dehydrogenase (LCAD). Results: Residues Lys-318 and Lys-322 are responsible for these effects. Conclusion: Acetylation of Lys-318/Lys-322 alters the conformation of the LCAD active site. Sirtuin 3 (SIRT3) deacetylates these lysines and restores function. Significance: Acetylation of LCAD Lys-318/Lys-322 can disrupt fatty acid oxidation and contribute to metabolic disease. Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases.


Cancer Research | 2006

Altered Expression and Localization of Creatine Kinase B, Heterogeneous Nuclear Ribonucleoprotein F, and High Mobility Group Box 1 Protein in the Nuclear Matrix Associated with Colon Cancer

Manimalha Balasubramani; Billy W. Day; Robert E. Schoen; Robert H. Getzenberg

Identification of biomarkers could lead to the development of effective screening tests for colorectal cancer. A previous study from our laboratory showed specific alterations of nuclear structure in colon cancer. In an effort to characterize these biomarkers, protein spots were selected from separations made by two-dimensional gel electrophoresis, which were analyzed by mass spectrometry. The sequences obtained from the isolated spots revealed that they have close similarity to creatine kinase B (CKB) isoforms, heterogeneous nuclear ribonucleoprotein F (hnRNP F) and high mobility group box 1 protein (HMGB1) isoforms. To determine the expression of these proteins in colon cancer, expression was studied in 9 tumor and matched adjacent normal pairs, 5 donor colons, 16 polyps, 4 metastatic liver lesions and matched adjacent normal pairs, and 3 liver donors. CKB and hnRNP F were expressed in 78% and 89% of colon tumors, respectively. hnRNP F had a higher frequency of expression than CKB in premalignant polyps. With the establishment of differential expression of the proteins in colon cancer, their subcellular localization was analyzed. The subcellular fractions studied both showed high protein levels of hnRNP F in colon tumors compared with normal colon tissues. Surprisingly, subcellular levels of CKB were decreased in colon tumors, suggesting that the observed high CKB levels in nuclear matrix extracts are caused by the enhanced localization of CKB to the nuclear matrix during colon tumorigenesis. These results suggest an involvement of hnRNP F and CKB in colorectal cancer. Additionally, they suggest that hnRNP F is a potential marker for colorectal cancer progression.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Lysine 63-linked polyubiquitination is required for EGF receptor degradation

Fangtian Huang; Xuemei Zeng; Woong Kim; Manimalha Balasubramani; Arola Fortian; Steven P. Gygi; Nathan A. Yates; Alexander Sorkin

Significance Many proteins are modified by the covalent attachment of a small polypeptide called ubiquitin to their lysine residues. Lysines in ubiquitin itself are further ubiquitinated, leading to formation of ubiquitin chains. Single ubiquitins and ubiquitin chains attached to integral membrane proteins, such as receptors, transporters, and channels, serve as molecular signals mediating endocytosis of these proteins and their subsequent targeting to lysosomes for degradation. This work uses quantitative mass spectrometry to show that activated EGF receptor is ubiquitinated by one to two short polyubiquitin chains linked via ubiquitin lysine 63 or conjugated with a single monoubiquitin. It is demonstrated that these Lys63-linked polyubiquitin chains are necessary for efficient targeting of EGF receptor to the lysosomal degradation pathway. Ubiquitination mediates endocytosis and endosomal sorting of various signaling receptors, transporters, and channels. However, the relative importance of mono- versus polyubiquitination and the role of specific types of polyubiquitin linkages in endocytic trafficking remain controversial. We used mass spectrometry-based targeted proteomics to show that activated epidermal growth factor receptor (EGFR) is ubiquitinated by one to two short (two to three ubiquitins) polyubiquitin chains mainly linked via lysine 63 (K63) or conjugated with a single monoubiquitin. Multimonoubiquitinated EGFR species were not found. To directly test whether K63 polyubiquitination is necessary for endocytosis and post-endocytic sorting of EGFR, a chimeric protein, in which the K63 linkage-specific deubiquitination enzyme AMSH [associated molecule with the Src homology 3 domain of signal transducing adaptor molecule (STAM)] was fused to the carboxyl terminus of EGFR, was generated. MS analysis of EGFR-AMSH ubiquitination demonstrated that the fraction of K63 linkages was substantially reduced, whereas relative amounts of monoubiquitin and K48 linkages increased, compared with that of wild-type EGFR. EGFR-AMSH was efficiently internalized into early endosomes, but, importantly, the rates of ligand-induced sorting to late endosomes and degradation of EGFR-AMSH were dramatically decreased. The slow degradation of EGFR-AMSH resulted in the sustained signaling activity of this chimeric receptor. Ubiquitination patterns, rate of endosomal sorting, and signaling kinetics of EGFR fused with the catalytically inactive mutant of AMSH were reversed to normal. Altogether, the data are consistent with the model whereby short K63-linked polyubiquitin chains but not multimonoubiquitin provide an increased avidity for EGFR interactions with ubiquitin adaptors, thus allowing rapid sorting of activated EGFR to the lysosomal degradation pathway.


Cell Adhesion & Migration | 2013

Protein composition and biomechanical properties of in vivo-derived basement membranes

Willi Halfter; Joseph Candiello; Haiyu Hu; Peng Zhang; Emanuel M. Schreiber; Manimalha Balasubramani

Basement membranes (BMs) evolved together with the first metazoan species approximately 500 million years ago. Main functions of BMs are stabilizing epithelial cell layers and connecting different types of tissues to functional, multicellular organisms. Mutations of BM proteins from worms to humans are either embryonic lethal or result in severe diseases, including muscular dystrophy, blindness, deafness, kidney defects, cardio-vascular abnormalities or retinal and cortical malformations. In vivo-derived BMs are difficult to come by; they are very thin and sticky and, therefore, difficult to handle and probe. In addition, BMs are difficult to solubilize complicating their biochemical analysis. For these reasons, most of our knowledge of BM biology is based on studies of the BM-like extracellular matrix (ECM) of mouse yolk sac tumors or from studies of the lens capsule, an unusually thick BM. Recently, isolation procedures for a variety of BMs have been described, and new techniques have been developed to directly analyze the protein compositions, the biomechanical properties and the biological functions of BMs. New findings show that native BMs consist of approximately 20 proteins. BMs are four times thicker than previously recorded, and proteoglycans are mainly responsible to determine the thickness of BMs by binding large quantities of water to the matrix. The mechanical stiffness of BMs is similar to that of articular cartilage. In mice with mutation of BM proteins, the stiffness of BMs is often reduced. As a consequence, these BMs rupture due to mechanical instability explaining many of the pathological phenotypes. Finally, the morphology and protein composition of human BMs changes with age, thus BMs are dynamic in their structure, composition and biomechanical properties.


Neurobiology of Disease | 2011

Modification of ubiquitin-C-terminal hydrolase-L1 by cyclopentenone prostaglandins exacerbates hypoxic injury.

Hao Liu; Wenjin Li; Muzamil Ahmad; Tricia M. Miller; Marie E. Rose; Samuel M. Poloyac; Guy Uechi; Manimalha Balasubramani; Robert W. Hickey; Steven H. Graham

Cyclopentenone prostaglandins (CyPGs), such as 15-deoxy-Δ(12,14) -prostaglandin J(2) (15d-PGJ(2)), are active prostaglandin metabolites exerting a variety of biological effects that may be important in the pathogenesis of neurological diseases. Ubiquitin-C-terminal hydrolase L1 (UCH-L1) is a brain specific deubiquitinating enzyme whose aberrant function has been linked to neurodegenerative disorders. We report that [15d-PGJ(2)] detected by quadrapole mass spectrometry (MS) increases in rat brain after temporary focal ischemia, and that treatment with 15d-PGJ(2) induces accumulation of ubiquitinated proteins and exacerbates cell death in normoxic and hypoxic primary neurons. 15d-PGJ(2) covalently modifies UCH-L1 and inhibits its hydrolase activity. Pharmacologic inhibition of UCH-L1 exacerbates hypoxic neuronal death while transduction with a TAT-UCH-L1 fusion protein protects neurons from hypoxia. These studies indicate that UCH-L1 function is important in hypoxic neuronal death and that excessive production of CyPGs after stroke may exacerbate ischemic injury by modification and inhibition of UCH-L1.


Matrix Biology | 2010

Molecular interactions in the retinal basement membrane system: A proteomic approach

Manimalha Balasubramani; Emanuel M. Schreiber; Joseph Candiello; G.K. Balasubramani; Justin Kurtz; Willi Halfter

Basement membranes (BMs) are physiologically insoluble extracellular matrix sheets present in all multicellular organisms. They play an important role in providing mechanical strength to tissues and regulating cell behavior. Proteomic analysis of BM proteins is challenged by their high molecular weights and extensive post-translational modifications. Here, we describe the direct analysis of an in vivo BM system using a mass spectrometry (MS) based proteomics approach. Retinal BMs were isolated from embryonic chick eyes. The BM macromolecules were deglycosylated and separated by low percentage gradient SDS PAGE, in-gel digested and analyzed by LC-MS/MS. This identified over 27 extracellular matrix proteins in the retinal BM. A semi-quantitative measure of protein abundance distinguished, nidogens-1 and -2, laminin subunits α1, α5, β2, and γ1, agrin, collagen XVIII, perlecan, FRAS1 and FREM2 as the most abundant BM protein components. Laminin subunits α3, β1, γ2, γ3 and collagen IV subunits α5 and α6 were minor constituents. To examine binding interactions that contribute to the stability of the retinal BM, we applied the LC-MS/MS based approach to detect potential BM complexes from the vitreous. Affinity-captured nidogen- and heparin-binding proteins from the vitreous contained >10 and >200 proteins respectively. Comparison of these protein lists with the retinal BM proteome reveals that glycosaminoglycan and nidogen binding interactions play a central role in the internal structure and formation of the retinal BM. In addition, we studied the biomechanical qualities of the retinal BM before and after deglycosylation using atomic force microscopy. These results show that the glycosaminoglycan side chains of the proteoglycans play a dominant role in regulating the thickness and elasticity of the BMs by binding water to the extracellular matrix. To our knowledge, this is the first large-scale investigation of an in vivo BM system using MS-based proteomics.


The EMBO Journal | 2010

Proteolysis of Rad17 by Cdh1/APC regulates checkpoint termination and recovery from genotoxic stress.

Liyong Zhang; Chi Hoon Park; Jing Wu; Hyun Soo Kim; Weijun Liu; Takeo Fujita; Manimalha Balasubramani; Emanuel M. Schreiber; Xiao-Fan Wang; Yong Wan

Recent studies have shown a critical function for the ubiquitin‐proteasome system (UPS) in regulating the signalling network for DNA damage responses and DNA repair. To search for new UPS targets in the DNA damage signalling pathway, we have carried out a non‐biased assay to identify fast‐turnover proteins induced by various types of genotoxic stress. This endeavour led to the identification of Rad17 as a protein exhibiting a distinctive pattern of upregulation followed by subsequent degradation after exposure to UV radiation in human primary cells. Our characterization showed that UV‐induced Rad17 oscillation is mediated by Cdh1/APC, a ubiquitin‐protein ligase. Studies using a degradation‐resistant Rad17 mutant demonstrated that Rad17 stabilization prevents the termination of checkpoint signalling, which in turn attenuates the cellular re‐entry into cell‐cycle progression. The findings provide an insight into how the proteolysis of Rad17 by Cdh1/APC regulates the termination of checkpoint signalling and the recovery from genotoxic stress.

Collaboration


Dive into the Manimalha Balasubramani's collaboration.

Top Co-Authors

Avatar

Willi Halfter

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Guy Uechi

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Billy W. Day

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark E. Bier

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sucai Dong

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Al-Walid Mohsen

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge