Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manish Chhowalla is active.

Publication


Featured researches published by Manish Chhowalla.


Nature Chemistry | 2013

The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets

Manish Chhowalla; Hyeon Suk Shin; Goki Eda; Lain-Jong Li; Kian Ping Loh; Hua Zhang

Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.


Nature Nanotechnology | 2008

Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material

Goki Eda; Giovanni Fanchini; Manish Chhowalla

The integration of novel materials such as single-walled carbon nanotubes and nanowires into devices has been challenging, but developments in transfer printing and solution-based methods now allow these materials to be incorporated into large-area electronics. Similar efforts are now being devoted to making the integration of graphene into devices technologically feasible. Here, we report a solution-based method that allows uniform and controllable deposition of reduced graphene oxide thin films with thicknesses ranging from a single monolayer to several layers over large areas. The opto-electronic properties can thus be tuned over several orders of magnitude, making them potentially useful for flexible and transparent semiconductors or semi-metals. The thinnest films exhibit graphene-like ambipolar transistor characteristics, whereas thicker films behave as graphite-like semi-metals. Collectively, our deposition method could represent a route for translating the interesting fundamental properties of graphene into technologically viable devices.


Nature Chemistry | 2010

Graphene oxide as a chemically tunable platform for optical applications

Kian Ping Loh; Qiaoliang Bao; Goki Eda; Manish Chhowalla

Chemically derived graphene oxide (GO) is an atomically thin sheet of graphite that has traditionally served as a precursor for graphene, but is increasingly attracting chemists for its own characteristics. It is covalently decorated with oxygen-containing functional groups - either on the basal plane or at the edges - so that it contains a mixture of sp(2)- and sp(3)-hybridized carbon atoms. In particular, manipulation of the size, shape and relative fraction of the sp(2)-hybridized domains of GO by reduction chemistry provides opportunities for tailoring its optoelectronic properties. For example, as-synthesized GO is insulating but controlled deoxidation leads to an electrically and optically active material that is transparent and conducting. Furthermore, in contrast to pure graphene, GO is fluorescent over a broad range of wavelengths, owing to its heterogeneous electronic structure. In this Review, we highlight the recent advances in optical properties of chemically derived GO, as well as new physical and biological applications.


Nano Letters | 2011

Photoluminescence from Chemically Exfoliated MoS2

Goki Eda; Hisato Yamaguchi; Damien Voiry; Takeshi Fujita; Mingwei Chen; Manish Chhowalla

A two-dimensional crystal of molybdenum disulfide (MoS2) monolayer is a photoluminescent direct gap semiconductor in striking contrast to its bulk counterpart. Exfoliation of bulk MoS2 via Li intercalation is an attractive route to large-scale synthesis of monolayer crystals. However, this method results in loss of pristine semiconducting properties of MoS2 due to structural changes that occur during Li intercalation. Here, we report structural and electronic properties of chemically exfoliated MoS2. The metastable metallic phase that emerges from Li intercalation was found to dominate the properties of as-exfoliated material, but mild annealing leads to gradual restoration of the semiconducting phase. Above an annealing temperature of 300 °C, chemically exfoliated MoS2 exhibit prominent band gap photoluminescence, similar to mechanically exfoliated monolayers, indicating that their semiconducting properties are largely restored.


Science | 2015

High-efficiency solution-processed perovskite solar cells with millimeter-scale grains

Wanyi Nie; Hsinhan Tsai; Reza Asadpour; Jean Christophe Blancon; Amanda J. Neukirch; Gautam Gupta; Jared Crochet; Manish Chhowalla; Sergei Tretiak; Muhammad A. Alam; Hsing-Lin Wang; Aditya D. Mohite

Large-crystal perovskite films The performance of organic-inorganic hybrid perovskite planar solar cells has steadily improved. One outstanding issue is that grain boundaries and defects in polycrystalline films degrade their output. Now, two studies report the growth of millimeter-scale single crystals. Nie et al. grew continuous, pinhole-free, thin iodochloride films with a hot-casting technique and report device efficiencies of 18%. Shi et al. used antisolvent vapor-assisted crystallization to grow millimeter-scale bromide and iodide cubic crystals with charge-carrier diffusion lengths exceeding 10 mm. Science, this issue p. 522, p. 519 Solution processing techniques enable the growth of high-quality, large-area perovskite crystals for solar cells. State-of-the-art photovoltaics use high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high-temperature crystal growth processes. We demonstrate a solution-based hot-casting technique to grow continuous, pinhole-free thin films of organometallic perovskites with millimeter-scale crystalline grains. We fabricated planar solar cells with efficiencies approaching 18%, with little cell-to-cell variability. The devices show hysteresis-free photovoltaic response, which had been a fundamental bottleneck for the stable operation of perovskite devices. Characterization and modeling attribute the improved performance to reduced bulk defects and improved charge carrier mobility in large-grain devices. We anticipate that this technique will lead the field toward synthesis of wafer-scale crystalline perovskites, necessary for the fabrication of high-efficiency solar cells, and will be applicable to several other material systems plagued by polydispersity, defects, and grain boundary recombination in solution-processed thin films.


Science | 2013

Liquid Exfoliation of Layered Materials

Valeria Nicolosi; Manish Chhowalla; Mercouri G. Kanatzidis; Michael S. Strano; Jonathan N. Coleman

Background Since at least 400 C.E., when the Mayans first used layered clays to make dyes, people have been harnessing the properties of layered materials. This gradually developed into scientific research, leading to the elucidation of the laminar structure of layered materials, detailed understanding of their properties, and eventually experiments to exfoliate or delaminate them into individual, atomically thin nanosheets. This culminated in the discovery of graphene, resulting in a new explosion of interest in two-dimensional materials. Layered materials consist of two-dimensional platelets weakly stacked to form three-dimensional structures. The archetypal example is graphite, which consists of stacked graphene monolayers. However, there are many others: from MoS2 and layered clays to more exotic examples such as MoO3, GaTe, and Bi2Se3. These materials display a wide range of electronic, optical, mechanical, and electrochemical properties. Over the past decade, a number of methods have been developed to exfoliate layered materials in order to produce monolayer nanosheets. Such exfoliation creates extremely high-aspect-ratio nanosheets with enormous surface area, which are ideal for applications that require surface activity. More importantly, however, the two-dimensional confinement of electrons upon exfoliation leads to unprecedented optical and electrical properties. Liquid exfoliation of layered crystals allows the production of suspensions of two-dimensional nanosheets, which can be formed into a range of structures. (A) MoS2 powder. (B) WS2 dispersed in surfactant solution


Advanced Materials | 2010

Chemically Derived Graphene Oxide: Towards Large‐Area Thin‐Film Electronics and Optoelectronics

Goki Eda; Manish Chhowalla

Chemically derived graphene oxide (GO) possesses a unique set of properties arising from oxygen functional groups that are introduced during chemical exfoliation of graphite. Large-area thin-film deposition of GO, enabled by its solubility in a variety of solvents, offers a route towards GO-based thin-film electronics and optoelectronics. The electrical and optical properties of GO are strongly dependent on its chemical and atomic structure and are tunable over a wide range via chemical engineering. In this Review, the fundamental structure and properties of GO-based thin films are discussed in relation to their potential applications in electronics and optoelectronics.


Advanced Materials | 2010

Blue photoluminescence from chemically derived graphene oxide.

Goki Eda; Yun-Yue Lin; Cecilia Mattevi; Hisato Yamaguchi; Hsin‐An Chen; I-Sheng Chen; Chun-Wei Chen; Manish Chhowalla

Blue photoluminescence from chemically derived graphene oxide Goki Eda, Yun-Yue Lin, Cecilia Mattevi, Hisato Yamaguchi, Hsin-An Chen, I-Sheng Chen, Chun-Wei Chen, and Manish Chhowalla 1 Department of Materials, Imperial College, Exhibition Road, London SW7 2AZ, UK. 2 Department of Materials Science and Engineering, Rutgers University 607 Taylor Road, Piscataway, NJ 08854, USA. 3 Department of Materials Science and Engineering, National Taiwan University No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.


Nature Materials | 2013

Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution

Damien Voiry; Hisato Yamaguchi; Junwen Li; Rafael Silva; Diego C. B. Alves; Takeshi Fujita; Mingwei Chen; Tewodros Asefa; Vivek B. Shenoy; Goki Eda; Manish Chhowalla

Efficient evolution of hydrogen through electrocatalysis at low overpotentials holds tremendous promise for clean energy. Hydrogen evolution can be easily achieved by electrolysis at large potentials that can be lowered with expensive platinum-based catalysts. Replacement of Pt with inexpensive, earth-abundant electrocatalysts would be significantly beneficial for clean and efficient hydrogen evolution. To this end, promising results have been reported using 2H (trigonal prismatic) XS₂ (where X  =  Mo or W) nanoparticles with a high concentration of metallic edges. The key challenges for XS₂ are increasing the number and catalytic activity of active sites. Here we report monolayered nanosheets of chemically exfoliated WS₂ as efficient catalysts for hydrogen evolution with very low overpotentials. Analyses indicate that the enhanced electrocatalytic activity of WS₂ is associated with the high concentration of the strained metallic 1T (octahedral) phase in the as-exfoliated nanosheets. Our results suggest that chemically exfoliated WS₂ nanosheets are interesting catalysts for hydrogen evolution.


Nature Chemistry | 2010

Structural evolution during the reduction of chemically derived graphene oxide

Akbar Bagri; Cecilia Mattevi; Muge Acik; Yves J. Chabal; Manish Chhowalla; Vivek B. Shenoy

The excellent electrical, optical and mechanical properties of graphene have driven the search to find methods for its large-scale production, but established procedures (such as mechanical exfoliation or chemical vapour deposition) are not ideal for the manufacture of processable graphene sheets. An alternative method is the reduction of graphene oxide, a material that shares the same atomically thin structural framework as graphene, but bears oxygen-containing functional groups. Here we use molecular dynamics simulations to study the atomistic structure of progressively reduced graphene oxide. The chemical changes of oxygen-containing functional groups on the annealing of graphene oxide are elucidated and the simulations reveal the formation of highly stable carbonyl and ether groups that hinder its complete reduction to graphene. The calculations are supported by infrared and X-ray photoelectron spectroscopy measurements. Finally, more effective reduction treatments to improve the reduction of graphene oxide are proposed.

Collaboration


Dive into the Manish Chhowalla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. I. Milne

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Goki Eda

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. B. K. Teo

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Hisato Yamaguchi

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. G. Hasko

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aditya D. Mohite

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gautam Gupta

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge