Manish Mishra
Wayne State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manish Mishra.
Investigative Ophthalmology & Visual Science | 2013
Qing Zhong; Manish Mishra; Renu A. Kowluru
PURPOSE Increase in reactive oxygen species (ROS) is one of the major retinal metabolic abnormalities associated with the development of diabetic retinopathy. NF-E2-related factor 2 (Nrf2), a redox sensitive factor, provides cellular defenses against the cytotoxic ROS. In stress conditions, Nrf2 dissociates from its cytosolic inhibitor, Kelch like-ECH-associated protein 1 (Keap1), and moves to the nucleus to regulate the transcription of antioxidant genes including the catalytic subunit of glutamylcysteine ligase (GCLC), a rate-limiting reduced glutathione (GSH) biosynthesis enzyme. Our aim is to understand the role of Nrf2-Keap1-GCLC in the development of diabetic retinopathy. METHODS Effect of diabetes on Nrf2-Keap1-GCLC pathway, and subcellular localization of Nrf2 and its binding with Keap1 was investigated in the retina of streptozotocin-induced diabetic rats. The binding of Nrf2 at GCLC was quantified by chromatin immunoprecipitation technique. The results were confirmed in isolated retinal endothelial cells, and also in the retina from human donors with diabetic retinopathy. RESULTS Diabetes increased retinal Nrf2 and its binding with Keap1, but decreased DNA-binding activity of Nrf2 and also its binding at the promoter region of GCLC. Similar impairments in Nrf2-Keap1-GCLC were observed in the endothelial cells exposed to high glucose and in the retina from donors with diabetic retinopathy. In retinal endothelial cells, glucose-induced impairments in Nrf2-GCLC were prevented by Nrf2 inducer tBHQ and also by Keap1-siRNA. CONCLUSIONS Due to increased binding of Nrf2 with Keap1, its translocation to the nucleus is compromised contributing to the decreased GSH levels. Thus, regulation of Nrf2-Keap1 by pharmacological or molecular means could serve as a potential adjunct therapy to combat oxidative stress and inhibit the development of diabetic retinopathy.
Biochimica et Biophysica Acta | 2015
Renu A. Kowluru; Manish Mishra
Diabetes has emerged as an epidemic of the 21st century, and retinopathy remains the leading cause of blindness in young adults and the mechanism of this blinding disease remains evasive. Diabetes-induced metabolic abnormalities have been identified, but a causal relationship between any specific abnormality and the development of this multi-factorial disease is unclear. Reactive oxygen species (ROS) are increased and the antioxidant defense system is compromised. Increased ROS result in retinal metabolic abnormalities, and these metabolic abnormalities can also produce ROS. Sustained exposure to ROS damages the mitochondria and compromises the electron transport system (ETC), and, ultimately, the mitochondrial DNA (mtDNA) is damaged. Damaged mtDNA impairs its transcription, and the vicious cycle of ROS continues to propagate. Many genes important in generation and neutralization of ROS are also epigenetically modified further increasing ROS, and the futile cycle continues to fuel in. Antioxidants have generated beneficial effects in ameliorating retinopathy in diabetic rodents, but limited clinical studies have not been encouraging. With the ongoing use of antioxidants for other chronic diseases, there is a need for a controlled trial to recognize their potential in ameliorating the development of this devastating disease.
Progress in Retinal and Eye Research | 2015
Renu A. Kowluru; Anjan Kowluru; Manish Mishra; Binit Kumar
Diabetic retinopathy remains the major cause of blindness among working age adults. Although a number of metabolic abnormalities have been associated with its development, due to complex nature of this multi-factorial disease, a link between any specific abnormality and diabetic retinopathy remains largely speculative. Diabetes increases oxidative stress in the retina and its capillary cells, and overwhelming evidence suggests a bidirectional relationship between oxidative stress and other major metabolic abnormalities implicated in the development of diabetic retinopathy. Due to increased production of cytosolic reactive oxygen species, mitochondrial membranes are damaged and their membrane potentials are impaired, and complex III of the electron transport system is compromised. Suboptimal enzymatic and nonenzymatic antioxidant defense system further aids in the accumulation of free radicals. As the duration of the disease progresses, mitochondrial DNA (mtDNA) is damaged and the DNA repair system is compromised, and due to impaired transcription of mtDNA-encoded proteins, the integrity of the electron transport system is encumbered. Due to decreased mtDNA biogenesis and impaired transcription, superoxide accumulation is further increased, and the vicious cycle of free radicals continues to self-propagate. Diabetic milieu also alters enzymes responsible for DNA and histone modifications, and various genes important for mitochondrial homeostasis, including mitochondrial biosynthesis, damage and antioxidant defense, undergo epigenetic modifications. Although antioxidant administration in animal models has yielded encouraging results in preventing diabetic retinopathy, controlled longitudinal human studies remain to be conducted. Furthermore, the role of epigenetic in mitochondrial homeostasis suggests that regulation of such modifications also has potential to inhibit/retard the development of diabetic retinopathy.
BioMed Research International | 2013
Renu A. Kowluru; Julia M. Santos; Manish Mishra
Diabetic retinopathy remains one of the most debilitating chronic complications, but despite extensive research in the field, the exact mechanism(s) responsible for how retina is damaged in diabetes remains ambiguous. Many metabolic pathways have been implicated in its development, and genes associated with these pathways are altered. Diabetic environment also facilitates epigenetics modifications, which can alter the gene expression without permanent changes in DNA sequence. The role of epigenetics in diabetic retinopathy is now an emerging area, and recent work has shown that genes encoding mitochondrial superoxide dismutase (Sod2) and matrix metalloproteinase-9 (MMP-9) are epigenetically modified, activates of epigenetic modification enzymes, histone lysine demethylase 1 (LSD1), and DNA methyltransferase are increased, and the micro RNAs responsible for regulating nuclear transcriptional factor and VEGF are upregulated. With the growing evidence of epigenetic modifications in diabetic retinopathy, better understanding of these modifications has potential to identify novel targets to inhibit this devastating disease. Fortunately, the inhibitors and mimics targeted towards histone modification, DNA methylation, and miRNAs are now being tried for cancer and other chronic diseases, and better understanding of the role of epigenetics in diabetic retinopathy will open the door for their possible use in combating this blinding disease.
Diabetologia | 2014
Renu A. Kowluru; Anjaneyulu Kowluru; Rajakrishnan Veluthakal; Ghulam Mohammad; Ismail Syed; Julia M. Santos; Manish Mishra
Aims/hypothesisIn diabetes, increased retinal oxidative stress is seen before the mitochondria are damaged. Phagocyte-like NADPH oxidase-2 (NOX2) is the predominant cytosolic source of reactive oxygen species (ROS). Activation of Ras-related C3 botulinum toxin substrate 1 (RAC1), a NOX2 holoenzyme member, is necessary for NOX2 activation and ROS generation. In this study we assessed the role of T cell lymphoma invasion and metastasis (TIAM1), a guanine nucleotide exchange factor for RAC1, in RAC1 and NOX2 activation and the onset of mitochondrial dysfunction in in vitro and in vivo models of glucotoxicity and diabetes.MethodsRAC1 and NOX2 activation, ROS generation, mitochondrial damage and cell apoptosis were quantified in bovine retinal endothelial cells exposed to high glucose concentrations, in the retina from normal and streptozotocin-induced diabetic rats and mice, and the retina from human donors with diabetic retinopathy.ResultsHigh glucose activated RAC1 and NOX2 (expression and activity) and increased ROS in endothelial cells before increasing mitochondrial ROS and mitochondrial DNA (mtDNA) damage. N6-[2-[[4-(diethylamino)-1-methylbutyl]amino]-6-methyl-4-pyrimidinyl]-2-methyl-4,6-quinolinediamine, trihydrochloride (NSC23766), a known inhibitor of TIAM1–RAC1, markedly attenuated RAC1 activation, total and mitochondrial ROS, mtDNA damage and cell apoptosis. An increase in NOX2 expression and membrane association of RAC1 and p47phox were also seen in diabetic rat retina. Administration of NSC23766 to diabetic mice attenuated retinal RAC1 activation and ROS generation. RAC1 activation and p47phox expression were also increased in the retinal microvasculature from human donors with diabetic retinopathy.Conclusions/interpretationThe TIAM1–RAC1–NOX2 signalling axis is activated in the initial stages of diabetes to increase intracellular ROS leading to mitochondrial damage and accelerated capillary cell apoptosis. Strategies targeting TIAM1–RAC1 signalling could have the potential to halt the progression of diabetic retinopathy in the early stages of the disease.
Investigative Ophthalmology & Visual Science | 2015
Manish Mishra; Renu A. Kowluru
PURPOSE Retinal mitochondria are dysfunctional in diabetes, and mitochondrial DNA (mtDNA) is damaged and its transcription is compromised. Our aim was to investigate the role of mtDNA methylation in the development of diabetic retinopathy. METHODS Effect of high glucose (20 mM) on mtDNA methylation was analyzed in retinal endothelial cells by methylation-specific PCR and by quantifying 5-methylcytosine (5mC). Dnmt1 binding at the D-loop and Cytb regions of mtDNA was analyzed by chromatin immunoprecipitation. The role of mtDNA methylation in transcription and cell death was confirmed by quantifying transcripts of mtDNA-encoded genes (Cytb, ND6, and CoxII) and apoptosis, using cells transfected with Dnmt1-small interfering RNA (siRNA), or incubated with a Dnmt inhibitor. The key parameters were validated in the retinal microvasculature from human donors with diabetic retinopathy. RESULTS High glucose increased mtDNA methylation, and methylation was significantly higher at the D-loop than at the Cytb and CoxII regions. Mitochondrial accumulation of Dnmt1 and its binding at the D-loop were also significantly increased. Inhibition of Dnmt by its siRNA or pharmacologic inhibitor ameliorated glucose-induced increase in 5mC levels and cell apoptosis. Retinal microvasculature from human donors with diabetic retinopathy presented similar increase in D-loop methylation and decrease in mtDNA transcription. CONCLUSIONS Hypermethylation of mtDNA in diabetes impairs its transcription, resulting in dysfunctional mitochondria and accelerated capillary cell apoptosis. Regulation of mtDNA methylation has potential to restore mitochondrial homeostasis and inhibit/retard the development of diabetic retinopathy.
Free Radical Biology and Medicine | 2014
Manish Mishra; Qing Zhong; Renu A. Kowluru
Diabetes increases oxidative stress in the retina and decreases the levels of the intracellular antioxidant glutathione (GSH). The transcriptional factor Nrf2 regulates the expression of Gclc, the enzyme important in the biosynthesis of GSH, and in diabetes the binding of Nrf2 at the antioxidant response element region 4 (ARE4) is decreased. Our aim was to investigate the role of epigenetic modifications in the decreased Nrf2 binding at Gclc-ARE4 in the development of diabetic retinopathy and in the metabolic memory associated with its continued progression. The effect of hyperglycemia on H3K4 methylation in Nrf2 binding at Gclc-ARE4 was investigated by chromatin immunoprecipitation in the rat retina and was confirmed in retinal endothelial cells in which histone demethylase (LSD1) was manipulated. The role of histone methylation at Gclc-ARE4 in the metabolic memory was examined in rats maintained under poor control for 3 months followed by good control (GC) for 3 months. Although H3K4me2 at Gclc-ARE4 was increased in diabetes, H3K4me3 and H3K4me1 were decreased. LSD1 siRNA abrogated the glucose-induced decrease in H3K4me1 at Gclc-ARE4 and ameliorated decreases in Nrf2 binding at Gclc-ARE4 and Gclc transcripts. Reestablishment of GC failed to provide any benefits to histone methylation, and Nrf2 binding activity remained compromised. Thus, in diabetic retinopathy, histone methylation at Gclc-ARE4 plays an important role in regulating the Nrf2-Gclc-GSH cascade. Targeting histone methylation could help inhibit/slow down this blinding disease.
Experimental Eye Research | 2014
Julia M. Santos; Manish Mishra; Renu A. Kowluru
Mitochondrial transcription factor A (TFAM) is one of the key regulators of the transcription of mtDNA. In diabetes, despite increase in gene transcripts of TFAM, its protein levels in the mitochondria are decreased and mitochondria copy numbers become subnormal. The aim of this study is to investigate the mechanism(s) responsible for decreased mitochondrial TFAM in diabetes. Using retinal endothelial cells, we have investigated the effect of overexpression of cytosolic chaperone, Hsp70, and TFAM on glucose-induced decrease in mitochondrial TFAM levels, and the transcription of mtDNA-encoded genes, NADH dehydrogenase subunit 6 (ND6) and cytochrome b (Cytb). To investigate the role of posttranslational modifications in subnormal mitochondrial TFAM, ubiquitination of TFAM was assessed, and the results were confirmed in the retina from streptozotocin-induced diabetic rats. While overexpression of Hsp70 failed to prevent glucose-induced decrease in mitochondrial TFAM and transcripts of ND6 and Cytb, overexpression of TFAM ameliorated decrease in its mitochondrial protein levels and transcriptional activity. TFAM was ubiquitinated by high glucose, and PYR-41, an inhibitor of ubiquitination, prevented TFAM ubiquitination and restored the transcriptional activity. Similarly, TFAM was ubiquitinated in the retina from diabetic rats, and it continued to be modified after reinstitution of normal glycemia. Our results clearly imply that the ubiquitination of TFAM impedes its transport to the mitochondria resulting in subnormal mtDNA transcription and mitochondria dysfunction, and inhibition of ubiquitination restores mitochondrial homeostasis. Reversal of hyperglycemia does not provide any benefit to TFAM ubiquitination. Thus, strategies targeting posttranslational modification could provide an avenue to preserve mitochondrial homeostasis, and inhibit the development/progression of diabetic retinopathy.
Investigative Ophthalmology & Visual Science | 2014
Manish Mishra; Qing Zhong; Renu A. Kowluru
PURPOSE Diabetes induces oxidative imbalance in the retina and impairs Nrf2-mediated antioxidant response, and elevates Keap1, the cytoplasmic repressor of Nrf2. The goal of this study was to understand the role of epigenetic modifications at Keap1 promoter in regulation of Nrf2 function. METHODS The effect of high glucose on the binding of transcriptional factor Sp1 at Keap1 promoter and histone methylation status of the promoter was investigated in retinal endothelial cells. Role of histone methylation was confirmed in cells transfected with siRNA of methyltransferase enzyme Set7/9 (SetD7). In vitro results were confirmed in the retina from streptozotocin-induced diabetic rats. The role of epigenetic modifications of Keap1 promoter in the metabolic memory was examined in rats maintained in poor control for 3 months followed by good control for 3 months. RESULTS Hyperglycemia increased the binding of Sp1 at Keap1 promoter, and enriched H3K4me1 and activated SetD7. SetD7-siRNA prevented increase in Sp1 binding at Keap1 promoter and Keap1 expression, and ameliorated decrease in Nrf2-regulated antioxidant genes. Cessation of hyperglycemia failed to attenuate increased binding of Sp1 at Keap1, and the promoter continued to be methylated with increased expression of Keap1 and decreased expression of Nrf2-regulated genes. CONCLUSIONS Epigenetic modifications at Keap1 promoter by SetD7 facilitate its binding with Sp1, increasing its expression. Keap1 restrains Nrf2 in the cytosol, impairing its transcriptional activity. Reversal of hyperglycemia fails to provide any benefit to epigenetic modifications of Keap1 promoter, suggesting their role in both the development of diabetic retinopathy and the metabolic memory phenomenon.
Laboratory Investigation | 2016
Renu A. Kowluru; Yang Shan; Manish Mishra
Diabetes elevates matrix metalloproteinase-9 (MMP-9) in the retina and its capillary cells, and activated MMP-9 damages mitochondria, accelerating retinal capillary cell apoptosis, a phenomenon which precedes the development of retinopathy. Diabetes also favors epigenetic modifications regulating the expression of many genes. DNA methylation is maintained by methylating–hydroxymethylating enzymes, and retinal DNA methyltransferase (Dnmt) is activated in diabetes. Our aim is to investigate the role of DNA methylation in MMP-9 regulation. The effect of high glucose on 5-methylcytosine (5mC) and 5-hydroxymethyl cytosine (5hmC), and binding of Dnmt1 and hydroxymethylating enzyme (Tet2) on MMP-9 promoter were quantified in retinal endothelial cells. Specific role of Tet2 in MMP-9 activation was validated using Tet2-siRNA. The results were confirmed in the retina from streptozotocin-induced diabetic mouse. Although glucose increased Dnmt1 binding at MMP-9 promoter, it decreased 5mC levels. At the same promoter site, Tet2 binding and 5hmC levels were elevated. Tet2-siRNA ameliorated increase in 5hmC and MMP-9 transcription, and protected mitochondrial damage. Diabetic mice also presented similar dynamic DNA methylation changes in the retinal MMP-9 promoter. Thus, in diabetes transcription of retinal MMP-9 is maintained, in part, by an active DNA methylation–hydroxymethylation process, and regulation of this machinery should help maintain mitochondrial homeostasis and inhibit the development/progression of diabetic retinopathy.