Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manisha Goel is active.

Publication


Featured researches published by Manisha Goel.


Database | 2014

CBMAR: a comprehensive β-lactamase molecular annotation resource.

Abhishikha Srivastava; Neelja Singhal; Manisha Goel; Jugsharan Singh Virdi; Manish Kumar

β-Lactam antibiotics are among the most widely used antibiotics against microbial pathogens. However, enzymatic hydrolysis of these antibiotics by bacterial β-lactamases is increasingly compromising their efficiency. Although new generation β-lactam antibiotics have been developed to combat antibiotic resistance, β-lactamases have also evolved along with the new variants of the substrate. A strong selection pressure from the newer generation of β-lactam antibiotics has resulted in evolution of different families within each class of β-lactamase. To facilitate detailed characterization of different families of β-lactamases, we have created a database, CBMAR, which facilitates comprehensive molecular annotation and discovery of novel β-lactamases. As against the limited scope of other existing similar databases, CBMAR provides information useful for molecular and biochemical characterization of each family of β-lactamase. The basic architecture of CBMAR is based on Ambler classification, which divides β-lactamases as serine (Classes A, C and D) and metallo-β-lactamases (Class B). Each class is further divided into several families on the basis of their hydrolytic character. In CBMAR, each family is annotated with (i) sequence variability, (ii) antibiotic resistance profile, (iii) inhibitor susceptibility, (iv) active site, (v) family fingerprints, (vi) mutational profile, (vii) variants, (viii) gene location, (ix) phylogenetic tree and several other features. Each entry also has external links to the relevant protein/nucleotide sequence and structure databases. The database also supports sequence similarity searches using BLAST and assigns a new β-lactamase protein to its respective family on the basis of family-specific fingerprint. Database URL: http://14.139.227.92/mkumar/lactamasedb


Biology Direct | 2015

Phylogenetic and evolutionary analysis of functional divergence among Gamma glutamyl transpeptidase (GGT) subfamilies

Ved Vrat Verma; Rani Gupta; Manisha Goel

Backgroundγ-glutamyltranspeptidase (GGT) is a bi-substrate enzyme conserved in all three domains of life. It catalyzes the cleavage and transfer of γ-glutamyl moiety of glutathione to either water (hydrolysis) or substrates like peptides (transpeptidation). GGTs exhibit great variability in their enzyme kinetics although the mechanism of catalysis is conserved. Recently, GGT has been shown to be a virulence factor in microbes like Helicobacter pylori and Bacillus anthracis. In mammalian cells also, GGT inhibition prior to chemotherapy has been shown to sensitize tumors to the therapy. Therefore, lately both bacterial and eukaryotic GGTs have emerged as potential drug targets, but the efforts directed towards finding suitable inhibitors have not yielded any significant results yet. We propose that delineating the residues responsible for the functional diversity associated with these proteins could help in design of species/clade specific inhibitors.ResultsIn the present study, we have carried out phylogenetic analysis on a set of 47 GGT-like proteins to address the functional diversity. These proteins segregate into various subfamilies, forming separate clades on the tree. Sequence conservation and motif prediction studies show that even though most of the highly conserved residues have been characterized biochemically in previous studies, a significant number of novel putative sites and motifs are discovered that vary in a clade specific manner. Many of the putative sites predicted during the functional divergence type I and type II analysis, lie close to the known catalytic residues and line the walls of the substrate binding cavity, reinforcing their role in modulating the substrate specificity, catalytic rates and stability of this protein.ConclusionThe study offers interesting insights into the evolution of GGT-like proteins in pathogenic vs. non-pathogenic bacteria, archaea and eukaryotes. Our analysis delineates residues that are highly specific to each GGT subfamily. We propose that these sites not only explain the differences in stability and catalytic variability of various GGTs but can also aid in design of specific inhibitors against particular GGTs. Thus, apart from the commonly used in-silico inhibitor screening approaches, evolutionary analysis identifying the functional divergence hotspots in GGT proteins could augment the structure based drug design approaches.ReviewersThis article was reviewed by Andrei Osterman, Christine Orengo, and Srikrishna Subramanian. For complete reports, see the Reviewers’ reports section


The Scientific World Journal | 2014

Identification of Family Specific Fingerprints in β-Lactamase Families

Abhishikha Srivastava; Neelja Singhal; Manisha Goel; Jugsharan Singh Virdi; Manish Kumar

Beta-lactamases are a superfamily of enzymes which degrade the β-lactam class of antibiotics. They are produced endogenously by the bacterial cells, which when exposed to the β-lactam class of antibiotics inactivate them by cleaving the β-lactam ring. Based on the presence or absence of metallic ligand, β-lactamases have been divided into two broad functional classes. β-Lactamases are a constitutively evolving and expanding superfamily of enzymes, which could be further subdivided on the basis of presence/absence of conserved motifs. In the present study we have used the MEME/MAST suit to identify the patterns/motifs which are specific to a particular family or subfamily of β-lactamases. The family specific patterns/motifs can be also useful in recognizing and assigning newly discovered β-lactamases to one or the other family or subfamily. Cross-validation showed that the proposed method is highly sensitive and specific. We have also designed a webserver, LactFP, for this purpose.


Biochemical and Biophysical Research Communications | 2016

Selective disruption of disulphide bonds lowered activation energy and improved catalytic efficiency in TALipB from Trichosporon asahii MSR54: MD simulations revealed flexible lid and extended substrate binding area in the mutant

Yogesh Singh; Namita Gupta; Ved Vrat Verma; Manisha Goel; Rani Gupta

TALipB (33 kDa) is a solvent stable, enantioselective lipase from Trichosporon asahii MSR54. It is cysteine-rich and shows activation in presence of thiol reducing agents. DIANNA server predicted three disulphide bridges C53-C195 (S1), C89-C228 (S2) and C164-C254 (S3) in the enzyme. Selective disruption of disulphide bonds by cysteine to alanine mutations at Cys53 and Cys89 of S1 and S2 bonds resulted in enzyme activation. Mutant mTALipB (S1+S2) showed increase in specific activity by ∼4-fold (834 mM/mg) and improved Vmax of 6.27 μmol/ml/min at 40 °Con pNP caprate. Temperature optima of mTALipB shifted from 50 to 40 °C and activation energy decreased by 0.7 kcal mol(-1). However, the mutant was less thermostable with a t1/2 of 18 min at 60 °C as compared to t1/2 of 38 min for the native enzyme. Mutant also displayed an improved activity on all pNP esters and higher enantiomeric excess (61%) during esterification of (±) 1-phenylethanol. Far-UV CD analysis showed significant changes in secondary structure after S-S bridge disruption with 7.16% decrease in α-helices and 1.31% increase in β-sheets. In silico analysis predicted two lids (α5 and α9) in TALipB. Molecular dynamic simulations at 40 °C and 50 °C revealed that in the mTALipB, both the lids opened at 40 °C with clockwise and anticlockwise rotations in Lid1 and Lid2, respectively. In the native protein, however, the lid was only partially open even at 50 °C. Concomitant to lid flexibility, there was an extension of accessible catalytic triad surface area resulting in improved catalytic efficiency of the mutant enzyme.


Journal of Phycology | 2014

Cellular organelles facilitate dimerization of a newly identified Arf from Chlamydomonas reinhardtii.

Peeyush Ranjan; Rudra Shankar Kashyap; Manisha Goel; Sindhu Kandoth Veetil; Suneel Kateriya

GTPases of the Ras superfamily regulate a wide variety of cellular processes including vesicular transport and various secretory pathways of the cell. ADP – ribosylation factor (ARF) belongs to one of the five major families of the Ras superfamily and serves as an important component of vesicle formation and transport machinery of the cells. The binding of GTP to these Arfs and its subsequent hydrolysis, induces conformational changes in these proteins leading to their enzymatic activities. The dimeric form of Arf is associated with membrane pinch‐off during vesicle formation. In this report, we have identified an arf gene from the unicellular green alga Chlamydomonas reinhardtii, CrArf, and showed that the oligomeric state of the protein in C. renhardtii is modulated by the cellular membrane environment of the organism. Protein cross‐linking experiments showed that the purified recombinant CrArf has the ability to form a dimer. Both the 20‐kDa monomeric and 40‐kDa dimeric forms of CrArf were recognized from Chlamydomonas total cell lysate (CrTLC) and purified recombinant CrArf by the CrArf specific antibody. The membranous environment of the cell appeared to facilitate dimerization of the CrArf, as dimeric form was found exclusively associated with the membrane bound organelles. The subcellular localization studies in Chlamydomonas suggested that CrArf mainly localized in the cytosol and was mislocalized in vesicle transport machinery inhibitor treated cells. This research sheds light on the importance of the cellular membrane environment for regulating the oligomeric state of CrArf protein in this organism and associated functional role.


Journal of Molecular Recognition | 2018

Functional divergence and comparative in-silico study of Cas4 proteins of DUF83 class

Vineeta Kaushik; Ved Vrat Verma; Manisha Goel

Clustered Regularly Interspaced Short Palindromic Repeats‐CRISPR associated (CRISPR‐Cas) systems present in genomes of bacteria and archaea have been the focus of many research studies recently. The Cas4 proteins of these systems are thought to be responsible for the adaptation step in the CRISPR mechanism. Cas4 proteins exhibit low sequence similarity among themselves and are currently classified into 2 main classes: DUF83 and DUF911. The characteristic features of Cas4 proteins belonging to DUF83 class have been elucidated by determining the structures of Cas4 protein from Sulfolobus solfataricus and Pyrobaculum calidifontis. Although, both Cas4 proteins characterized structurally are of same DUF83 class, these 2 proteins do exhibit significant biochemical and functional differences. The aim of the present study was to explore the structural and evolutionary features responsible for these differences. Our study predicts residues which might be responsible for such differences. Functional divergence analysis was used to predict sites exhibiting type I divergence, where certain amino acids are conserved in 1 clade whereas the same site is highly variable in the other clade. Our intra‐molecular interaction analysis reinforces the influence of such divergence sites on the other functionally important amino acids. In general, this study identifies some of the divergence hotspots that could be the focus of future experimental studies for better understanding of Cas4 enzymatic activity in CRISPR mechanism.


Cell Stress & Chaperones | 2018

Insights into archaeal chaperone machinery: a network-based approach

Shikha Rani; Ankush Sharma; Manisha Goel

Molecular chaperones are a diverse group of proteins that ensure proteome integrity by helping the proteins fold correctly and maintain their native state, thus preventing their misfolding and subsequent aggregation. The chaperone machinery of archaeal organisms has been thought to closely resemble that found in humans, at least in terms of constituent players. Very few studies have been ventured into system-level analysis of chaperones and their functioning in archaeal cells. In this study, we attempted such an analysis of chaperone-assisted protein folding in archaeal organisms through network approach using Picrophilus torridus as model system. The study revealed that DnaK protein of Hsp70 system acts as hub in protein-protein interaction network. However, DnaK protein was present only in a subset of archaeal organisms and absent from many archaea, especially members of Crenarchaeota phylum. Therefore, a similar network was created for another archaeal organism, Sulfolobus solfataricus, a member of Crenarchaeota. The chaperone network of S. solfataricus suggested that thermosomes played an integral part of hub proteins in archaeal organisms, where DnaK was absent. We further compared the chaperone network of archaea with that found in eukaryotic systems, by creating a similar network for Homo sapiens. In the human chaperone network, the UBC protein, a part of ubiquitination system, was the most important module, and interestingly, this system is known to be absent in archaeal organisms. Comprehensive comparison of these networks leads to several interesting conclusions regarding similarities and differences within archaeal chaperone machinery in comparison to humans.


Critical Reviews in Microbiology | 2017

Navigating the structure–function–evolutionary relationship of CsaA chaperone in archaea

Archana Sharma; Shikha Rani; Manisha Goel

Abstract CsaA is a protein involved in the post-translational translocation of proteins across the cytoplasmic membrane. It is considered to be a functional homolog of SecB which participates in the Sec-dependent translocation pathway in an analogous manner. CsaA has also been reported to act as a molecular chaperone, preventing aggregation of unfolded proteins. It is essentially a prokaryotic protein which is absent in eukaryotes, but found extensively in bacteria and earlier thought to be widely present in archaea. The study of phylogenetic distribution of CsaA among prokaryotes suggests that it is present only in few archaeal organisms, mainly species of Thermoplasmatales and Halobacteriales. Interestingly, the CsaA protein from these two archaeal orders cluster separately on the phylogenetic tree with CsaA from Gram-positive and Gram-negative bacteria. It, thus, appears that this protein might have been acquired in these archaeal organisms through independent horizontal gene transfer (HGT) events from different bacteria. In this review, we summarize the earlier biochemical, structural, and functional characterization studies of CsaA. We draw new insights into the evolutionary history of this protein through phylogenetic and structural comparison of bacterial CsaA with modelled archaeal CsaA from Picrophilus torridus and Natrialba magadii.


Molecular Biotechnology | 2016

In-Vitro Refolding and Characterization of Recombinant Laccase (CotA) From Bacillus pumilus MK001 and Its Potential for Phenolics Degradation

Sandeep Kumar; Kavish Kr. Jain; Shikha Rani; Kailash N. Bhardwaj; Manisha Goel; Ramesh Chander Kuhad


Fems Microbiology Letters | 2016

CrAgDb--a database of annotated chaperone repertoire in archaeal genomes.

Shikha Rani; Abhishikha Srivastava; Manish Kumar; Manisha Goel

Collaboration


Dive into the Manisha Goel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neelja Singhal

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge