Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manja A. Behrens is active.

Publication


Featured researches published by Manja A. Behrens.


Biomacromolecules | 2013

Self-healing mussel-inspired multi-pH-responsive hydrogels.

Marie Krogsgaard; Manja A. Behrens; Jan Skov Pedersen; Henrik Birkedal

Self-healing hydrogels can be made using either reversible covalent cross-links or coordination chemistry bonds. Here we present a multi-pH-responsive system inspired by the chemistry of blue mussel adhesive proteins. By attaching DOPA to an amine-functionalized polymer, a multiresponsive system is formed upon reaction with iron. The degree of polymer cross-linking is pH controlled through the pH-dependent DOPA/iron coordination chemistry. This leads to the formation of rapidly self-healing high-strength hydrogels when pH is raised from acidic toward basic values. Close to the pK(a) value, or more precisely the pI value, of the polymer, the gel collapses due to reduced repulsion between polymer chains. Thereby a bistable gel-system is obtained. The present polymer system more closely resembles mussel adhesive proteins than those previously reported and thus also serves as a model system for mussel adhesive chemistry.


Nucleic Acids Research | 2011

Synergistic activation of eIF4A by eIF4B and eIF4G

Klaus H. Nielsen; Manja A. Behrens; Yangzi He; Cristiano L. P. Oliveira; Lars Sottrup Jensen; Søren V. Hoffmann; Jan Skov Pedersen; Gregers R. Andersen

eIF4A is a key component in eukaryotic translation initiation; however, it has not been clear how auxiliary factors like eIF4B and eIF4G stimulate eIF4A and how this contributes to the initiation process. Based on results from isothermal titration calorimetry, we propose a two-site model for eIF4A binding to an 83.5 kDa eIF4G fragment (eIF4G-MC), with a high- and a low-affinity site, having binding constants KD of ∼50 and ∼1000 nM, respectively. Small angle X-ray scattering analysis shows that the eIF4G-MC fragment adopts an elongated, well-defined structure with a maximum dimension of 220 Å, able to span the width of the 40S ribosomal subunit. We establish a stable eIF4A–eIF4B complex requiring RNA, nucleotide and the eIF4G-MC fragment, using an in vitro RNA pull-down assay. The eIF4G-MC fragment does not stably associate with the eIF4A–eIF4B–RNA-nucleotide complex but acts catalytically in its formation. Furthermore, we demonstrate that eIF4B and eIF4G-MC act synergistically in stimulating the ATPase activity of eIF4A.


The EMBO Journal | 2010

Crystal structure of a transfer-ribonucleoprotein particle that promotes asparagine formation

Mickael Blaise; Marc Bailly; Mathieu Frechin; Manja A. Behrens; Frédéric Fischer; Cristiano L. P. Oliveira; Hubert Dominique Becker; Jan Skov Pedersen; Søren Thirup; Daniel Kern

Four out of the 22 aminoacyl‐tRNAs (aa‐tRNAs) are systematically or alternatively synthesized by an indirect, two‐step route requiring an initial mischarging of the tRNA followed by tRNA‐dependent conversion of the non‐cognate amino acid. During tRNA‐dependent asparagine formation, tRNAAsn promotes assembly of a ribonucleoprotein particle called transamidosome that allows channelling of the aa‐tRNA from non‐discriminating aspartyl‐tRNA synthetase active site to the GatCAB amidotransferase site. The crystal structure of the Thermus thermophilus transamidosome determined at 3 Å resolution reveals a particle formed by two GatCABs, two dimeric ND‐AspRSs and four tRNAsAsn molecules. In the complex, only two tRNAs are bound in a functional state, whereas the two other ones act as an RNA scaffold enabling release of the asparaginyl‐tRNAAsn without dissociation of the complex. We propose that the crystal structure represents a transient state of the transamidation reaction. The transamidosome constitutes a transfer‐ribonucleoprotein particle in which tRNAs serve the function of both substrate and structural foundation for a large molecular machine.


Journal of Physical Chemistry B | 2015

Charge-Induced Patchy Attractions between Proteins

Weimin Li; Björn Persson; Maxim Morin; Manja A. Behrens; Mikael Lund; Malin Zackrisson Oskolkova

Static light scattering (SLS) combined with structure-based Monte Carlo (MC) simulations provide new insights into mechanisms behind anisotropic, attractive protein interactions. A nonmonotonic behavior of the osmotic second virial coefficient as a function of ionic strength is here shown to originate from a few charged amino acids forming an electrostatic attractive patch, highly directional and complementary. Together with Coulombic repulsion, this attractive patch results in two counteracting electrostatic contributions to the interaction free energy which, by operating over different length scales, is manifested in a subtle, salt-induced minimum in the second virial coefficient as observed in both experiment and simulations.


Traffic | 2010

GGA autoinhibition revisited

Jacob Flyvholm Cramer; Camilla Gustafsen; Manja A. Behrens; Cristiano L. P. Oliveira; Jan Skov Pedersen; Peder Madsen; Claus Munck Petersen; Søren Thirup

The cytosolic adaptors GGA1‐3 mediate sorting of transmembrane proteins displaying a C‐terminal acidic dileucine motif (DXXLL) in their cytosolic domain. GGA1 and GGA3 contain similar but intrinsic motifs that are believed to serve as autoinhibitory sites activated by the phosphorylation of a serine positioned three residues upstream of the DXXLL motif. In the present study, we have subjected the widely acknowledged concept of GGA1 autoinhibition to a thorough structural and functional examination. We find that (i) the intrinsic motif of GGA1 is inactive, (ii) only C‐terminal DXXLL motifs constitute active GGA binding sites, (iii) while aspartates and phosphorylated serines one or two positions upstream of the DXXLL motif increase GGA1 binding, phosphoserines further upstream have little or no influence and (iv) phosphorylation of GGA1 does not affect its conformation or binding to Sortilin and SorLA. Taken together, our findings seem to refute the functional significance of GGA autoinhibition in particular and of intrinsic GGA binding motifs in general.


Journal of Physical Chemistry B | 2010

NMR Reveals Two-Step Association of Congo Red to Amyloid β in Low-Molecular-Weight Aggregates

Marie Ø. Pedersen; Katrine Mikkelsen; Manja A. Behrens; Jan Skov Pedersen; Jan J. Enghild; Troels Skrydstrup; Anders Malmendal; Niels Chr. Nielsen

Aggregation of the Amyloid β peptide into amyloid fibrils is closely related to development of Alzheimers disease. Many small aromatic compounds have been found to act as inhibitors of fibril formation, and have inspired the search for new drug candidates. However, the detailed mechanisms of inhibition are largely unknown. In this study, we have examined in detail the binding of the fibril-formation inhibitor Congo Red (CR) to monomeric Aβ(1-40) using a combination of 1D, 2D, saturation transfer difference, and diffusion NMR, as well as dynamic light scattering experiments. Our results show that CR binds to the fibril forming stretches of Aβ(1-40) monomers, and that complex formation occurs in two steps: An initial 1:1 CR:Aβ(1-40) complex is formed by a relatively strong interaction (K(d) ≈ 5 μM), and a 2:1 complex is formed by binding another CR molecule in a subsequent weaker binding step (K(d) ≈ 300 μM). The size of these complexes is comparable to that of Aβ(1-40) alone. The existence of two different complexes might explain the contradictory reports regarding the inhibitory effects of CR on the fibril-formation process.


Journal of Physical Chemistry B | 2011

Effects of temperature and salt concentration on the structural and dynamical features in aqueous solutions of charged triblock copolymers.

Anna-Lena Kjøniksen; Kaizheng Zhu; Manja A. Behrens; Jan Skov Pedersen; Bo Nyström

Effects of temperature and salt addition on the association behavior in aqueous solutions of a series of charged thermosensitive methoxypoly(ethylene glycol)-block-poly(N-isopropylacrylamide)-block-poly(4-styrenesulfonic acid sodium) triblock copolymers (MPEG(45)-b-P(NIPAAM)(n)-b-P(SSS)(22)) with different lengths of the PNIPAAM block (n=17, 48, and 66) have been studied with the aid of turbidity, small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS). Increasing temperature and salinity as well as longer PNIPAAM blocks are all factors that promote the formation of association structures. The SAXS data show that, for the copolymers with n=48 and n=66, increasing temperature and salt concentration induce interchain associations and higher values of the aggregation number, whereas no aggregation was observed for the copolymer with the shortest PNIPAAM chain. However, DLS measurements reveal the presence of larger association clusters. The cloud point is found to decrease with raising salinity and longer PNIPAAM block. The general picture that emerges is the delicate interplay between repulsive electrostatic forces and hydrophobic interactions and that this balance can be tuned by changing the temperature, salinity, and the length of the PNIPAAM block.


Journal of Immunology | 2012

The role of nanometer-scaled ligand patterns in polyvalent binding by large mannan-binding lectin oligomers

Louise C. Gjelstrup; Jørn Døvling Kaspersen; Manja A. Behrens; Jan Skov Pedersen; Steffen Thiel; Peter Kingshott; Cristiano L. P. Oliveira; Nicole M. Thielens; Thomas Vorup-Jensen

Mannan-binding lectin (MBL) is an important protein of the innate immune system and protects the body against infection through opsonization and activation of the complement system on surfaces with an appropriate presentation of carbohydrate ligands. The quaternary structure of human MBL is built from oligomerization of structural units into polydisperse complexes typically with three to eight structural units, each containing three lectin domains. Insight into the connection between the structure and ligand-binding properties of these oligomers has been lacking. In this article, we present an analysis of the binding to neoglycoprotein-coated surfaces by size-fractionated human MBL oligomers studied with small-angle x-ray scattering and surface plasmon resonance spectroscopy. The MBL oligomers bound to these surfaces mainly in two modes, with dissociation constants in the micro to nanomolar order. The binding kinetics were markedly influenced by both the density of ligands and the number of ligand-binding domains in the oligomers. These findings demonstrated that the MBL-binding kinetics are critically dependent on structural characteristics on the nanometer scale, both with regard to the dimensions of the oligomer, as well as the ligand presentation on surfaces. Therefore, our work suggested that the surface binding of MBL involves recognition of patterns with dimensions on the order of 10–20 nm. The recent understanding that the surfaces of many microbes are organized with structural features on the nanometer scale suggests that these properties of MBL ligand recognition potentially constitute an important part of the pattern-recognition ability of these polyvalent oligomers.


Langmuir | 2014

Multilamellar Vesicle Formation from a Planar Lamellar Phase under Shear Flow

Luigi Gentile; Manja A. Behrens; Lionel Porcar; Paul Butler; Norman J. Wagner; Ulf Olsson

The formation of multilamellar vesicles (MLVs) from the lamellar phase of nonionic surfactant system C12E5/D2O under shear flow is studied by time-resolved small angle neutron and light scattering during shear flow. A novel small angle neutron scattering sample environment enables the tracking of the lamellae alignment in the velocity-velocity gradient (1-2) plane during MLV formation, which was tracked independently using flow small angle light scattering commensurate with rheology. During the lamellar-to-multilamellar vesicle transition, the primary Bragg peak from the lamellar ordering was observed to tilt, and this gradually increased with time, leading to an anisotropic pattern with a primary axis oriented at ∼25° relative to the flow direction. This distorted pattern persists under flow after MLV formation. A critical strain and critical capillary number based on the MLV viscosity are demonstrated for MLV formation, which is shown to be robust for other systems as well. These novel measurements provide fundamentally new information about the flow orientation of lamellae in the plane of flow that cannot be anticipated from the large body of previous literature showing nearly isotropic orientation in the 2,3 and 1,3 planes of flow. These observations are consistent with models for buckling-induced MLV formation but suggest that the instability is three-dimensional, thereby identifying the mechanism of MLV formation in simple shear flow.


RSC Advances | 2016

On the dissolution state of cellulose in aqueous tetrabutylammonium hydroxide solutions

Manja A. Behrens; J. A. Holdaway; Pegah Nosrati; Ulf Olsson

We have characterized the dissolution state of microcrystalline cellulose (MCC) in aqueous 40 wt% tetrabutylammonium hydroxide (TBAH) using a combination of light and small angle X-ray scattering, up to 0.1 g cm−3. In dilute solutions, cellulose–cellulose interactions are repulsive, as seen by a positive second virial coefficient. Above 0.04 g cm−3, interactions shift from repulsive to be effectively attractive and cellulose begin to form aggregates that can be modelled as mass fractal clusters. The small angle X-ray scattering data also indicate that cellulose is preferentially solvated by TBA+ ions. We propose that the apparent shift in effective interactions is due to a phase transition where less soluble cellulose II precipitates while cellulose I still dissolves.

Collaboration


Dive into the Manja A. Behrens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge