Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manjeet K. Rao is active.

Publication


Featured researches published by Manjeet K. Rao.


Cell | 2005

Rhox: A New Homeobox Gene Cluster

James A. MacLean; Mingang A. Chen; Chad M. Wayne; Shirley R. Bruce; Manjeet K. Rao; Marvin L. Meistrich; Carol L. MacLeod; Miles F. Wilkinson

Homeobox genes encode transcription factors notable for their ability to regulate embryogenesis. Here, we report the discovery of a cluster of 12 related homeobox genes on the X chromosome expressed in male and female reproductive tissues in adult mice. These reproductive homeobox on the X chromosome (Rhox) genes are expressed in a cell type-specific manner; several are hormonally regulated, and their expression pattern during postnatal testis development corresponds to their chromosomal position. Most of the Rhox genes are expressed in Sertoli cells, the nurse cells in direct contact with developing male germ cells, suggesting that they regulate the expression of somatic-cell gene products critical for germ cell development. In support of this, targeted disruption of Rhox5 increased male germ cell apoptosis and reduced sperm production, sperm motility, and fertility. Identification of this family of homeobox genes provides an opportunity to study colinear gene regulation and the transcriptional control of reproduction.


Oncogene | 2010

MicroRNA-185 suppresses tumor growth and progression by targeting the Six1 oncogene in human cancers

J. S. Imam; K. Buddavarapu; J. S. Lee-Chang; S. Ganapathy; C. Camosy; Yidong Chen; Manjeet K. Rao

Homeobox genes encode transcription factors that are essential for normal development and are often dysregulated in cancers. The molecular mechanisms that cause their misregulation in cancers are largely unknown. In this study, we investigate the mechanism by which the Six1 homeobox protein, which has a crucial role during development, is frequently deregulated in several poor outcome, aggressive, metastatic adult human cancers, including breast cancer, ovarian cancer, hepatocellular carcinoma and pediatric malignancies such as rhabdomyosarcoma and Wilms’ tumor. Our results reveal that miRNA-185 translationally represses Six1 by binding to its 3′-untranslated region. Analyses of ovarian cancers, pediatric renal tumors and multiple breast cancer cell lines showed decreased miR-185 expression, paralleling an increase in Six1 levels. Further investigation revealed that miR-185 impedes anchorage-independent growth and cell migration, in addition to suppressing tumor growth in vivo, implicating it to be a potent tumor suppressor. Our results indicate that miR-185 mediates its tumor suppressor function by regulating cell-cycle proteins and Six1 transcriptional targets c-myc and cyclin A1. Furthermore, we show that miR-185 sensitizes Six1-overexpressing resistant cancer cells to apoptosis in general and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in particular. Together, our findings suggest that the altered expression of the novel tumor suppressor miR-185 may be one of the central events that leads to dysregulation of oncogenic protein Six1 in human cancers.


PLOS ONE | 2012

Genomic Loss of Tumor Suppressor miRNA-204 Promotes Cancer Cell Migration and Invasion by Activating AKT/mTOR/Rac1 Signaling and Actin Reorganization

J. Saadi Imam; Jason R. Plyler; Hima Bansal; Suresh I. Prajapati; Sanjay Bansal; Jennifer Rebeles; Hung-I Harry Chen; Yao-Fu Chang; Subbarayalu Panneerdoss; Behyar Zoghi; Kalyan Buddavarapu; Russell Broaddus; Peter J. Hornsby; Gail E. Tomlinson; Jeffrey S. Dome; Ratna K. Vadlamudi; Alexander Pertsemlidis; Yidong Chen; Manjeet K. Rao

Increasing evidence suggests that chromosomal regions containing microRNAs are functionally important in cancers. Here, we show that genomic loci encoding miR-204 are frequently lost in multiple cancers, including ovarian cancers, pediatric renal tumors, and breast cancers. MiR-204 shows drastically reduced expression in several cancers and acts as a potent tumor suppressor, inhibiting tumor metastasis in vivo when systemically delivered. We demonstrated that miR-204 exerts its function by targeting genes involved in tumorigenesis including brain-derived neurotrophic factor (BDNF), a neurotrophin family member which is known to promote tumor angiogenesis and invasiveness. Analysis of primary tumors shows that increased expression of BDNF or its receptor tropomyosin-related kinase B (TrkB) parallel a markedly reduced expression of miR-204. Our results reveal that loss of miR-204 results in BDNF overexpression and subsequent activation of the small GTPase Rac1 and actin reorganization through the AKT/mTOR signaling pathway leading to cancer cell migration and invasion. These results suggest that microdeletion of genomic loci containing miR-204 is directly linked with the deregulation of key oncogenic pathways that provide crucial stimulus for tumor growth and metastasis. Our findings provide a strong rationale for manipulating miR-204 levels therapeutically to suppress tumor metastasis.


Oncogene | 2014

Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer

Sweta Mishra; Janice Jianhong Deng; Pramod S. Gowda; Manjeet K. Rao; Chun-Lin Lin; Chun Liang Chen; Tim H M Huang; Lu-Zhe Sun

Prostate cancer cells escape growth inhibition from transforming growth factor β (TGFβ) by downregulating TGFβ receptors. However, the mechanism by which cancer cells downregulate TGFβ receptors in prostate is not clear. Here, we showed that coordinated action of miR-21 and androgen receptor (AR) signaling had a critical role in inhibiting TGFβ receptor II (TGFBR2) expression in prostate cancer cells. Our results revealed that miR-21 suppresses TGFBR2 levels by binding to its 3′-UTR and AR signaling further potentiates this effect in both untransformed and transformed human prostate epithelial cells as well as in human prostate cancers. Analysis of primary prostate cancers showed that increased miR-21/AR expression parallel a significantly reduced expression of TGFBR2. Manipulation of androgen signaling or the expression levels of AR or miR-21 negatively altered TGFBR2 expression in untransformed and transformed human prostate epithelial cells, human prostate cancer xenografts and mouse prostate glands. Importantly, we demonstrated that miR-21 and AR regulated each other’s expression resulting in a positive feedback loop. Our results indicated that miR-21/AR mediate its tumor-promoting function by attenuating TGFβ-mediated Smad2/3 activation, cell growth inhibition, cell migration and apoptosis. Together, these results suggest that the AR and miR-21 axis exerts its oncogenic effects in prostate tumors by downregulating TGFBR2, hence inhibiting the tumor-suppressive activity of TGFβ pathway. Targeting miR-21 alone or in combination with AR may restore the tumor inhibitory activity of TGFβ in prostate cancer.


BioTechniques | 2011

Isolation of Sertoli, Leydig, and spermatogenic cells from the mouse testis

Yao Fu Chang; Jennifer S. Lee-Chang; Subbarayalu Panneerdoss; James A. MacLean; Manjeet K. Rao

A thorough understanding of the events during mammalian spermatogenesis requires studying specific molecular signatures of individual testicular cell populations as well as their interaction in co-cultures. However, most purification techniques to isolate specific testicular cell populations are time-consuming, require large numbers of animals, and/or are only able to isolate a few cell types. Here we describe a cost-effective and timesaving approach that uses a single protocol to enrich multiple testicular cell populations (Sertoli, Leydig, and several spermatogenic cell populations) from as few as one mouse. Our protocol combines rigorous enzymatic digestion of seminiferous tubules with counter-current centrifugal elutriation, yielding specific testicular cell populations with >80%-95% purity.


Molecular and Cellular Biology | 2008

GATA Factors and Androgen Receptor Collaborate To Transcriptionally Activate the Rhox5 Homeobox Gene in Sertoli Cells

Anjana Bhardwaj; Manjeet K. Rao; Ramneet Kaur; Miriam R. Buttigieg; Miles F. Wilkinson

ABSTRACT How Sertoli-specific expression is initiated is poorly understood. Here, we address this issue using the proximal promoter (Pp) from the Rhox5 homeobox gene. Its Sertoli cell-specific expression is achieved, in part, through a negative regulatory element that inhibits Pp transcription in non-Sertoli cell lines. Complementing this negative regulation is positive regulation conferred by four androgen-response elements (AREs) that interact with the androgen receptor (AR), a nuclear hormone receptor expressed at high levels in Sertoli cells. A third control mechanism is provided by a consensus GATA-binding site that is crucial for Pp transcription both in vitro and in vivo. Several lines of evidence suggested that GATA factors and AR act cooperatively to activate Pp transcription: (i) the GATA-binding site crucial for Pp transcription is in close proximity to two of the AREs, (ii) GATA and AR form a complex with the Pp in vitro, (iii) overexpression of GATA factors rescued expression from mutant Pp constructs harboring defective AREs, and (iv) incubation of a Sertoli cell line with testosterone triggered corecruitment of AR and GATA4 to the Pp. Collectively, our results suggest that the Rhox5 gene achieves Sertoli cell-specific transcription using a combinatorial strategy involving negative and cooperative positive regulation.


Oncogene | 2014

Significance of PELP1/HDAC2/miR-200 regulatory network in EMT and metastasis of breast cancer

Sudipa Saha Roy; Vk Gonugunta; Abhik Bandyopadhyay; Manjeet K. Rao; Gregory J. Goodall; Lu-Zhe Sun; Rajeshwar Rao Tekmal; Ratna K. Vadlamudi

Tumor metastasis is the leading cause of death among breast cancer patients. PELP1 (proline, glutamic acid and leucine rich protein 1) is a nuclear receptor coregulator that is upregulated during breast cancer progression to metastasis and is an independent prognostic predictor of shorter survival of breast cancer patients. Here, we show that PELP1 modulates expression of metastasis-influencing microRNAs (miRs) to promote cancer metastasis. Whole genome miR array analysis using PELP1-overexpressing and PELP1-underexpressing model cells revealed that miR-200 and miR-141 levels inversely correlated with PELP1 expression. Consistent with this, PELP1 knockdown resulted in lower expression of miR-200a target genes ZEB1 and ZEB2. PELP1 knockdown significantly reduced tumor growth and metastasis compared with parental cells in an orthotopic xenograft tumor model. Furthermore, re-introduction of miR-200a and miR-141 mimetics into PELP1-overexpressing cells reversed PELP1 target gene expression, decreased PELP1-driven migration/invasion in vitro and significantly reduced in vivo metastatic potential in a preclinical model of experimental metastasis. Our results demonstrated that PELP1 binds to miR-200a and miR-141 promoters and regulates their expression by recruiting chromatin modifier histone deacetylase 2 (HDAC2) as revealed by chromatin immunoprecipitation, small interfering RNA and HDAC inhibitor assays. Taken together, our results suggest that PELP1 regulates tumor metastasis by controlling the expression and functions of the tumor metastasis suppressors miR-200a and miR-141.


PLOS ONE | 2012

Androgen-responsive microRNAs in mouse Sertoli cells.

Subbarayalu Panneerdoss; Yao Fu Chang; Kalyan Buddavarapu; Hung I Harry Chen; Gunapala Shetty; Huizhen Wang; Yidong Chen; T. Rajendra Kumar; Manjeet K. Rao

Although decades of research have established that androgen is essential for spermatogenesis, androgens mechanism of action remains elusive. This is in part because only a few androgen-responsive genes have been definitively identified in the testis. Here, we propose that microRNAs – small, non-coding RNAs – are one class of androgen-regulated trans-acting factors in the testis. Specifically, by using androgen suppression and androgen replacement in mice, we show that androgen regulates the expression of several microRNAs in Sertoli cells. Our results reveal that several of these microRNAs are preferentially expressed in the testis and regulate genes that are highly expressed in Sertoli cells. Because androgen receptor-mediated signaling is essential for the pre- and post-meiotic germ cell development, we propose that androgen controls these events by regulating Sertoli/germ cell-specific gene expression in a microRNA-dependent manner.


Blood | 2010

Heat shock protein 90 regulates the expression of Wilms' tumor 1 protein in myeloid leukemias

Hima Bansal; Sanjay Bansal; Manjeet K. Rao; Kevin Foley; Jim Sang; David A. Proia; Ronald K. Blackman; Weiwen Ying; James Barsoum; Maria R. Baer; Kevin R. Kelly; Ronan Swords; Gail E. Tomlinson; Minoo Battiwalla; Francis J. Giles; Kelvin P. Lee; Swaminathan Padmanabhan

The aberrant overexpression of Wilms tumor 1 (WT1) in myeloid leukemia plays an important role in blast cell survival and resistance to chemotherapy. High expression of WT1 is also associated with relapse and shortened disease-free survival in patients. However, the mechanisms by which WT1 expression is regulated in leukemia remain unclear. Here, we report that heat shock protein 90 (Hsp90), which plays a critical role in the folding and maturation of several oncogenic proteins, associates with WT1 protein and stabilizes its expression. Pharmacologic inhibition of Hsp90 resulted in ubiquitination and subsequent proteasome-dependant degradation of WT1. RNAi-mediated silencing of WT1 reduced the survival of leukemia cells and increased the sensitivity of these cells to chemotherapy and Hsp90 inhibition. Furthermore, Hsp90 inhibitors 17-AAG [17-(allylamino)-17-demethoxygeldanamycin] and STA-9090 significantly reduced the growth of myeloid leukemia xenografts in vivo and effectively down-regulated the expression of WT1 and its downstream target proteins, c-Myc and Bcl-2. Collectively, our studies identify WT1 as a novel Hsp90 client and support the crucial role for the WT1-Hsp90 interaction in maintaining leukemia cell survival. These findings have significant implications for developing effective therapies for myeloid leukemias and offer a strategy to inhibit the oncogenic functions of WT1 by clinically available Hsp90 inhibitors.


Journal of Biological Chemistry | 2002

Pem Homeobox Gene Regulatory Sequences That Direct Androgen-dependent Developmentally Regulated Gene Expression in Different Subregions of the Epididymis

Manjeet K. Rao; Chad M. Wayne; Miles F. Wilkinson

The epididymis is a useful model system to understand the mechanisms that govern region-specific gene expression, as many gene products display spatially restricted expression within this organ. However, surprisingly little is known about how this regulation is achieved. Here, we report regulatory sequences from thePem homeobox gene that drive expression in different subregions of the mouse epididymis in vivo. We found that the 0.3-kb 5′-flanking sequence (region I) from the Pemproximal promoter (Pem Pp) was sufficient to confer androgen-dependent and developmentally regulated expression in the caput region of the epididymis. Expression was restricted to the normal regions of expression of Pem in the caput (segments 2–4), but there was also aberrant expression in the corpus region. This corpus misexpression was extinguished when 0.6 kb of Pem Pp5′-flanking sequence was included in the transgene, indicating that one or more negative regulatory elements exist between 0.6 and 0.3 kb upstream of the Pem Pp start site (region II). When heterologous sequences were introduced upstream of the Pem Pp, expression was further restricted, mainly to caput segment 3, implying that the Pem Pp has segment-specific regulatory elements. To our knowledge, the regulatory regions we have identified are the shortest so far defined that dictate regionally localized expression in the epididymis in vivo. They may be useful for identifying the factors that regulate region-specific expression in the epididymis, for expressing and conditionally knocking out genes in different subregions of the epididymis, for treating male infertility, and for generating novel methods of male contraception.

Collaboration


Dive into the Manjeet K. Rao's collaboration.

Top Co-Authors

Avatar

Yidong Chen

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Santosh Timilsina

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Panneerdoss Subbarayalu

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Subapriya Rajamanickam

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Jia Meng

Xi'an Jiaotong-Liverpool University

View shared research outputs
Top Co-Authors

Avatar

Subbarayalu Panneerdoss

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Yufei Huang

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Nourhan Abdelfattah

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Ratna K. Vadlamudi

University of Texas Health Science Center at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge