Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manju B. Reddy is active.

Publication


Featured researches published by Manju B. Reddy.


British Journal of Nutrition | 1999

Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages

Richard F. Hurrell; Manju B. Reddy; James D. Cook

The effects of different polyphenol-containing beverages on Fe absorption from a bread meal were estimated in adult human subjects from the erythrocyte incorporation of radio-Fe. The test beverages contained different polyphenol structures and were rich in either phenolic acids (chlorogenic acid in coffee), monomeric flavonoids (herb teas, camomile (Matricaria recutita L.), vervain (Verbena officinalis L.), lime flower (Tilia cordata Mill.), pennyroyal (Mentha pulegium L.) and peppermint (Mentha piperita L.), or complex polyphenol polymerization products (black tea and cocoa). All beverages were potent inhibitors of Fe absorption and reduced absorption in a dose-dependent fashion depending on the content of total polyphenols. Compared with a water control meal, beverages containing 20-50 mg total polyphenols/serving reduced Fe absorption from the bread meal by 50-70%, whereas beverages containing 100-400 mg total polyphenols/serving reduced Fe absorption by 60-90%. Inhibition by black tea was 79-94%, peppermint tea 84%, pennyroyal 73%, cocoa 71%, vervain 59%, lime flower 52% and camomile 47%. At an identical concentration of total polyphenols, black tea was more inhibitory than cocoa, and more inhibitory than herb teas camomile, vervain, lime flower and pennyroyal, but was of equal inhibition to peppermint tea. Adding milk to coffee and tea had little or no influence on their inhibitory nature. Our findings demonstrate that herb teas, as well as black tea, coffee and coca can be potent inhibitors of Fe absorption. This property should be considered when giving dietary advice in relation to Fe nutrition.


British Journal of Nutrition | 2000

An evaluation of EDTA compounds for iron fortification of cereal-based foods

Richard F. Hurrell; Manju B. Reddy; Joseph Burri; James D. Cook

Fe absorption was measured in adult human subjects consuming different cereal foods fortified with radiolabelled FeSO4, ferrous fumarate or NaFeEDTA, or with radiolabelled FeSO4 or ferric pyrophosphate in combination with different concentrations of Na2EDTA. Mean Fe absorption from wheat, wheat-soyabean and quinoa (Chenopodium quinoa) infant cereals fortified with FeSO4 or ferrous fumarate ranged from 0.6 to 2.2%. For each infant cereal, mean Fe absorption from ferrous fumarate was similar to that from FeSO4 (absorption ratio 0.91-1.28). Mean Fe absorption from FeSO4-fortified bread rolls was 1.0% when made from high-extraction wheat flour and 5.7% when made from low-extraction wheat flour. Fe absorption from infant cereals and bread rolls fortified with NaFeEDTA was 1.9-3.9 times greater than when the same product was fortified with FeSO4. Both high phytate content and consumption of tea decreased Fe absorption from the NaFeEDTA-fortified rolls. When Na2EDTA up to a 1:1 molar ratio (EDTA:Fe) was added to FeSO4-fortified wheat cereal and wheat-soyabean cereal mean Fe absorption from the wheat cereal increased from 1.0% to a maximum of 5.7% at a molar ratio of 0.67:1, and from the wheat-soyabean cereal from 0.7% to a maximum of 2.9% at a molar ratio of 1:1. Adding Na2EDTA to ferric pyrophosphate-fortified wheat cereal did not significantly increase absorption (P > 0.05). We conclude that Fe absorption is higher from cereal foods fortified with NaFeEDTA than when fortified with FeSO4 or ferrous fumarate, and that Na2EDTA can be added to cereal foods to enhance absorption of soluble Fe-fortification compounds such as FeSO4.


Advances in Experimental Medicine and Biology | 1999

The Impact of Food Processing on the Nutritional Quality of Vitamins and Minerals

Manju B. Reddy; Mark H. Love

Processing (including preparation) makes food healthier, safer, tastier and more shelf-stable. While the benefits are numerous, processing can also be detrimental, affecting the nutritional quality of foods. Blanching, for example, results in leaching losses of vitamins and minerals. Also, milling and extrusion can cause the physical removal of minerals during processing. The nutritional quality of minerals in food depends on their quantity as well as their bioavailability. The bioavailability of key minerals such as iron, zinc and calcium is known to be significantly affected by the fiber, phytic acid, and tannin content of foods. Concentrations of these constituents are altered by various processing methods including milling, fermentation, germination (sprouting), extrusion, and thermal processing. Vitamins, especially ascorbic acid, thiamin and folic acid, are highly sensitive to the same processing methods. The time and temperature of processing, product composition and storage are all factors that substantially impact the vitamin status of our foods.


International Journal for Vitamin and Nutrition Research | 2005

The usefulness of in vitro models to predict the bioavailability of iron and zinc: A consensus statement from the HarvestPlus expert consultation

Susan J. Fairweather-Tait; Sean R. Lynch; Christine Hotz; Richard F. Hurrell; Leo Abrahamse; Steve Beebe; Stine B. Bering; Klaus Bukhave; Ray Glahn; Michael Hambidge; Janet R. Hunt; Bo Lönnerdal; Denis R. Miller; Najat Mohktar; Penelope Nestel; Manju B. Reddy; Ann-Sofie Sandberg; Paul Sharp; Birgit Teucher; Trinidad P. Trinidad

A combination of dietary and host-related factors determines iron and zinc absorption, and several in vitro methods have been developed as preliminary screening tools for assessing bioavailability. An expert committee has reviewed evidence for their usefulness and reached a consensus. Dialyzability (with and without simulated digestion) gives some useful information but cannot predict the correct magnitude of response and may sometimes predict the wrong direction of response. Caco-2 cell systems (with and without simulated digestion) have been developed for iron availability, but the magnitude of different effects does not always agree with results obtained in human volunteers, and the data for zinc are too limited to draw conclusions about the validity of the method. Caco-2 methodologies vary significantly between laboratories and require experienced technicians and good quality cell culture facilities to obtain reproducible results. Algorithms can provide semi-quantitative information enabling diets to be classified as high, moderate, or low bioavailability. While in vitro methods can be used to generate ideas and develop hypotheses, they cannot be used alone for important decisions concerning food fortification policy, selection of varieties for plant breeding programs, or for new product development in the food industry. Ultimately human studies are required for such determinations.


Toxicology | 2008

Neuroprotective effect of the natural iron chelator, phytic acid in a cell culture model of Parkinson's disease.

Qi Xu; Anumantha G. Kanthasamy; Manju B. Reddy

Disrupted iron metabolism and excess iron accumulation has been reported in the brains of Parkinsons disease (PD) patients. Because excessive iron can induce oxidative stress subsequently causing degradation of nigral dopaminergic neurons in PD, we determined the protective effect of a naturally occurring iron chelator, phytic acid (IP6), on 1-methyl-4-phenylpyridinium (MPP(+))-induced cell death in immortalized rat mesencephalic/dopaminergic cells. Cell death was induced with MPP(+) in normal and iron-excess conditions and cytotoxicity was measured by thiazolyl blue tetrazolium bromide (MTT assay) and trypan blue staining. Apoptotic cell death was also measured with caspase-3 activity, DNA fragmentation, and Hoechst nuclear staining. Compared to MPP(+) treatment, IP6 (30 micromol/L) increased cell viability by 19% (P<0.05) and decreased cell death by 22% (P<0.05). A threefold increase in caspase-3 activity (P<0.001) and a twofold increase in DNA fragmentation (P<0.05) with MPP(+) treatment was decreased by 55% (P<0.01) and 52% (P<0.05), respectively with IP6. Cell survival was increased by 18% (P<0.05) and 42% (P<0.001) with 30 and 100 micromol/L of IP6, respectively in iron-excess conditions. A 40% and 52% (P<0.001) protection was observed in caspase-3 activity with 30 and 100 micromol/L IP6, respectively in iron-excess condition. Similarly, a 45% reduction (P<0.001) in DNA fragmentation was found with 100 micromol/L IP6. In addition, Hoechst nuclear staining results confirmed the protective effect of IP6 against apoptosis. Similar protection was also observed with the differentiated cells. Collectively, our results demonstrate a significant neuroprotective effect of phytate in a cell culture model of PD.


Ecology of Food and Nutrition | 2006

Constraints on the Use of Animal Source Foods for Young Children in Ghana: A Participatory Rapid Appraisal Approach

Esi Colecraft; Grace S. Marquis; Richmond Aryeetey; Owuraku Sakyi-Dawson; Anna Lartey; Benjamin Ahunu; Emmanuel Canacoo; Lorna M Butler; Manju B. Reddy; Helen H. Jensen; Elisabeth J. Huff-Lonergan

Micronutrient deficiencies limit child health and development. Although animal source foods (ASF) provide highly bioavailable micronutrients, Ghanaian preschoolers consume little. Participatory rapid appraisal methods identified constraints to the availability, accessibility, and utilization of ASF. Stakeholders working with or living in six communities in three agro-ecological zones reported constraints including low income, lack of access to technology and markets, inequitable household food allocation, inadequate knowledge, and beliefs. The least expensive ASF was fish, which was easy to preserve and consumed by all communities. Since ASF was primarily purchased, interventions that increase income may be most successful in improving Ghanaian childrens diets.


Journal of Nutrition | 2002

Iron Fortification of Foods: Overcoming Technical and Practical Barriers

Ricardo Uauy; Eva Hertrampf; Manju B. Reddy

Iron fortification of food is a methodology utilized worldwide to address iron deficiency. A critical problem in some food fortification programs is the lack of bioavailability of iron compounds. This article reviews presentations on iron fortification programs in the Americas and the technical and practical barriers faced by the programs. Effective programmatic strategies will incorporate systematic consideration of sound program management, ensure consumption of fortified foods, and promote advocacy and supportive legislation. However, these factors are often overlooked or are not addressed coherently. Key components to consider in implementation of iron fortification programs include: utilization of foods and condiments containing fortificants that are bioavailable; program development and its implementation coordinated with targeted communications; utilizing resources from public/private sector partnerships; and operational research on how to overcome practical barriers for successful implementation of fortification.


Journal of Womens Health | 2009

Association of Oxidative Stress, Iron, and Centralized Fat Mass in Healthy Postmenopausal Women

Betsy L. Crist; D. Lee Alekel; Laura M. Ritland; Laura N. Hanson; Ulrike Genschel; Manju B. Reddy

OBJECTIVE Centralized adiposity, insulin resistance, excess iron, and elevated oxidative stress place postmenopausal women at risk for atherosclerotic cardiovascular disease (CVD). The objective of this study was to determine the relationship among excess iron, oxidative stress, and centralized fat mass in healthy postmenopausal women. METHODS The parent project recruited healthy women for a randomized, double-blind, clinical trial designed to examine the effect of soy isoflavones on bone. At baseline (n = 122), we measured three antioxidant enzymes, iron status indices (serum ferritin among others), oxidative stress indices (oxidized low-density lipoprotein [oxLDL], urinary isoprostanes [PGF(2alpha)], protein carbonyls, DNA damage), and waist, hip, and thigh fat mass using dual-energy x-ray absorptiometry (DXA). We calculated insulin resistance using the homeostasis model assessment (HOMA). Multiple regression analysis was used to determine the CVD risk factors that contributed to oxidative stress and centralized fat mass (waist + hip/thigh = AndGynFM ratio). RESULTS Almost 14% (p < 0.0005) of the variability in oxLDL was accounted for by AndGynFM ratio (6.1%, p < 0.0005), age (4.0%, p = 0.012), and serum iron (2.8%, p = 0.053). Similarly, 16% (p < 0.0001) of the variability in PGF(2alpha) was accounted for by the AndGynFM ratio (4.8%, p = 0.011), HOMA (3.9%, p = 0.021), and serum iron (2.7%, p = 0.054). We accounted for 33% (p </= 0.0001) of the variability in AndGynFM ratio by high-density lipoprotein cholesterol (HDL-C) (4.3%, p = 0.008), ferritin (4.9%, p = 0.005), HOMA (4.5%, p = 0.006), oxLDL (2.6%, p = 0.04), and PGF(2alpha) (3.0%, p = 0.025). CONCLUSIONS Our study suggests that reducing centralized fat mass and maintaining a favorable lipid profile, antioxidant status, and iron status all may be important in protecting postmenopausal women from atherosclerotic CVD.


Menopause | 2008

Centrally located body fat is related to inflammatory markers in healthy postmenopausal women

Courtney D. Perry; D. Lee Alekel; Laura M. Ritland; Shilpa N. Bhupathiraju; Jeanne W. Stewart; Laura N. Hanson; Oksana A Matvienko; Marian L. Kohut; Manju B. Reddy; Marta D. Van Loan; Ulrike Genschel

Objective:C-reactive protein and fibrinogen are established atherosclerotic cardiovascular disease risk factors. These acute-phase proteins and the proinflammatory cytokines tumor necrosis factor &agr;, interleukin-6, and interleukin-1&bgr; may be elevated in obesity and with menopause. The purpose of this multicenter study was to identify whether centrally located fat and/or overall adiposity were related to these inflammatory markers in healthy postmenopausal women. Design:We used dual-energy x-ray absorptiometry to assess overall and regional body composition (fat mass in particular) in 242 postmenopausal women in relation to plasma fibrinogen, serum C-reactive protein, and these proinflammatory cytokines. Results:Multiple regression analyses revealed that 36% of the variability in C-reactive protein (F = 32.4, P ≤ 0.0001) was accounted for by androidal fat mass (16.1%, P ≤ 0.0001), white blood cells (5.6%, P ≤ 0.0001), and age (2.3%, P = 0.0045). Regression analyses revealed that 30% of the variability in fibrinogen (F = 24.5, P ≤ 0.0001) was accounted for by white blood cells (3.1%, P = 0.0015), hip fat mass (2.2%, P = 0.0081), years since menopause (0.9%, P = 0.082), and geographic site (P ≤ 0.0001). Our results indicated that androidal fat mass and hip fat mass contributed to C-reactive protein and fibrinogen, respectively, whereas we found no association between whole-body or regional fat measures and cytokines. Conclusion:Further study is warranted to determine the responsiveness of these acute-phase proteins and cytokines to loss of body fat through exercise and dietary intervention in postmenopausal women.


Journal of Agricultural and Food Chemistry | 2006

Iron bioavailability of hemoglobin from soy root nodules using a Caco-2 cell culture model.

Amy K. Proulx; Manju B. Reddy

Heme iron has been identified in many plant sources-most commonly in the root nodules of leguminous plants, such as soy. Our objective was to test the effectiveness of soy root nodule (SRN) and purified soy hemoglobin (LHb) in improving iron bioavailability using an in vitro Caco-2 cell model, with ferritin response as the bioavailability index. We assessed bioavailability of iron from LHb (either partially purified (LHbA) or purified (LHbD)) with and without food matrix and compared it with that from bovine hemoglobin (BHb), ferrous sulfate (FeSO4), or SRN. Bioavailability of each treatment was normalized to 100% of the FeSO4 treatment. When iron sources were tested alone (100 ug iron/mL), ferritin synthesis by LHbD and BHb were 19% (P > 0.05) and 113% (P < 0.001) higher than FeSO4, respectively. However, when iron sources were used for fortification of maize tortillas (50 ppm), LHbA and BHb showed similar bioavailability, being 27% (P < 0.05) and 33% (P < 0.05) higher than FeSO4. Heat treatment had no effect on heme iron but had a significant reduction on FeSO4 bioavailability. Adding heme (LHbA) iron with nonheme (FeSO4) had no enhancement on nonheme iron absorption. Our data suggest that heme iron from plant sources may be a novel value-added product that can provide highly bioavailable iron as a food fortificant.

Collaboration


Dive into the Manju B. Reddy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Chen

Iowa State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge