Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manjula Sunkara is active.

Publication


Featured researches published by Manjula Sunkara.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Boronic acid-based inhibitor of autotaxin reveals rapid turnover of LPA in the circulation

Harald M. H. G. Albers; Anping Dong; Laurens A. van Meeteren; David A. Egan; Manjula Sunkara; Erica W. van Tilburg; Karianne Schuurman; Olaf van Tellingen; Andrew J. Morris; Susan S. Smyth; Wouter H. Moolenaar; Huib Ovaa

Autotaxin (ATX) is a secreted nucleotide pyrophosphatase/phosphodiesterase that functions as a lysophospholipase D to produce the lipid mediator lysophosphatidic acid (LPA), a mitogen, chemoattractant, and survival factor for many cell types. The ATX-LPA signaling axis has been implicated in angiogenesis, chronic inflammation, fibrotic diseases and tumor progression, making this system an attractive target for therapy. However, potent and selective nonlipid inhibitors of ATX are currently not available. By screening a chemical library, we have identified thiazolidinediones that selectively inhibit ATX-mediated LPA production both in vitro and in vivo. Inhibitor potency was approximately 100-fold increased (IC50 ∼ 30 nM) after the incorporation of a boronic acid moiety, designed to target the active-site threonine (T210) in ATX. Intravenous injection of this inhibitor into mice resulted in a surprisingly rapid decrease in plasma LPA levels, indicating that turnover of LPA in the circulation is much more dynamic than previously appreciated. Thus, boronic acid-based small molecules hold promise as candidate drugs to target ATX.


Leukemia | 2012

Conditioning for hematopoietic transplantation activates the complement cascade and induces a proteolytic environment in bone marrow: a novel role for bioactive lipids and soluble C5b-C9 as homing factors.

Chi Hwa Kim; Wan Wu; Marcin Wysoczynski; Ahmed Abdel-Latif; Manjula Sunkara; Andrew J. Morris; Magda Kucia; Janina Ratajczak; Mariusz Z. Ratajczak

We have observed that conditioning for hematopoietic transplantation by lethal irradiation induces a proteolytic microenvironment in the bone marrow (BM) that activates the complement cascade (CC). As a result, BM is enriched for proteolytic enzymes and the soluble form of the terminal product of CC activation, the membrane attack complex C5b-C9 (MAC). At the same time, proteolytic enzymes induced in irradiated BM impair the chemotactic activity of α-chemokine stromal-derived factor-1 (SDF-1). As SDF-1 is considered a crucial BM chemoattractant for transplanted hematopoietic stem/progenitor cells (HSPCs), we sought to determine whether other factors that are resistant to proteolytic enzymes have a role in this process, focusing on proteolysis-resistant bioactive lipids. We found that the concentrations of sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) increase in the BM after conditioning for transplantation and that both S1P and, as we show here for the first time, C1P are potent chemoattractants for HSPCs. Next, we observed that C5-deficient mice that do not generate MAC show impaired engraftment of HSPCs. In support of a role for MAC in homing and engraftment, we found that soluble MAC enhances in a CR3 (CD11b/CD18)-dependent manner the adhesion of HSPCs to BM stromal cells and increases the secretion of SDF-1 by BM stroma. We conclude that an increase in BM levels of proteolytic enzyme-resistant S1P and C1P and activation of CC, which leads to the generation of MAC, has an important and previously underappreciated role in the homing of transplanted HSPCs.


Cancer Research | 2012

Inhibition of Fatty Acid Synthase Attenuates CD44-Associated Signaling and Reduces Metastasis in Colorectal Cancer

Yekaterina Y. Zaytseva; Piotr G. Rychahou; Pat Gulhati; Victoria A. Elliott; William Mustain; Kathleen L. O'Connor; Andrew J. Morris; Manjula Sunkara; Heidi L. Weiss; Eun Y. Lee; B.M. Evers

Fatty acid synthase (FASN) and ATP-citrate lyase, key enzymes of de novo lipogenesis, are significantly upregulated and activated in many cancers and portend poor prognosis. Even though the role of lipogenesis in providing proliferative and survival advantages to cancer cells has been described, the impact of aberrant activation of lipogenic enzymes on cancer progression remains unknown. In this study, we found that elevated expression of FASN is associated with advanced stages of colorectal cancer (CRC) and liver metastasis, suggesting that it may play a role in progression of CRC to metastatic disease. Targeted inhibition of lipogenic enzymes abolished expression of CD44, a transmembrane protein associated with metastases in several cancers including CRC. In addition, inhibition of lipogenic enzymes and reduced expression of CD44 attenuated the activation of MET, Akt, FAK, and paxillin, which are known to regulate adhesion, migration, and invasion. These changes were consistent with an observed decrease in migration and adhesion of CRC cells in functional assays and with reorganization of actin cytoskeleton upon FASN inhibition. Despite the modest effect of FASN inhibition on tumor growth in xenografts, attenuation of lipogenesis completely abolished establishment of hepatic metastasis and formation of secondary metastasis. Together, our findings suggest that targeting de novo lipogenesis may be a potential treatment strategy for advanced CRC.


Journal of Biological Chemistry | 2011

Binding of autotaxin to integrins localizes lysophosphatidic acid production to platelets and mammalian cells.

Zachary Fulkerson; Tao Wu; Manjula Sunkara; Craig W. Vander Kooi; Andrew J. Morris; Susan S. Smyth

Autotaxin (ATX) is a secreted lysophospholipase D that generates the bioactive lipid mediator lysophosphatidic acid (LPA). We and others have reported that ATX binds to integrins, but the function of ATX-integrin interactions is unknown. The recently reported crystal structure of ATX suggests a role for the solvent-exposed surface of the N-terminal tandem somatomedin B-like domains in binding to platelet integrin αIIbβ3. The opposite face of the somatomedin B-like domain interacts with the catalytic phosphodiesterase (PDE) domain to form a hydrophobic channel through which lysophospholipid substrates enter and leave the active site. Based on this structure, we hypothesize that integrin-bound ATX can access cell surface substrates and deliver LPA to cell surface receptors. To test this hypothesis, we investigated the integrin selectivity and signaling pathways that promote ATX binding to platelets. We report that both platelet β1 and β3 integrins interact in an activation-dependent manner with ATX via the SMB2 domain. ATX increases thrombin-stimulated LPA production by washed platelets ∼10-fold. When incubated under conditions to promote integrin activation, ATX generates LPA from CHO cells primed with bee venom phospholipase A2, and ATX-mediated LPA production is enhanced more than 2-fold by CHO cell overexpression of integrin β3. The effects of ATX on platelet and cell-associated LPA production, but not hydrolysis of small molecule or detergent-solubilized substrates, are attenuated by point mutations in the SMB2 that impair integrin binding. Integrin binding therefore localizes ATX activity to the cell surface, providing a mechanism to generate LPA in the vicinity of its receptors.


Cell Reports | 2012

The Transporter Spns2 Is Required for Secretion of Lymph but Not Plasma Sphingosine-1-Phosphate

Alejandra Mendoza; Béatrice Bréart; Willy D. Ramos-Perez; Lauren A. Pitt; Michael Gobert; Manjula Sunkara; Juan J. Lafaille; Andrew J. Morris; Susan R. Schwab

Plasma sphingosine-1-phosphate (S1P) regulates vascular permeability, and plasma and lymph S1P guide lymphocyte egress from lymphoid organs. S1P is made intracellularly, and little is known about how S1P is delivered into circulatory fluids. Here, we find that mice without the major facilitator superfamily transporter Spns2 have a profound reduction in lymph S1P, but only a minor decrease in plasma S1P. Spns2-deficient mice have a redistribution of lymphocytes from the spleen to lymph nodes and a loss of circulating lymphocytes, consistent with normal egress from the spleen directed by plasma S1P and blocked egress from lymph nodes directed by lymph S1P. Spns2 is needed in endothelial cells to supply lymph S1P and support lymphocyte circulation. As a differential requirement for lymph and blood S1P, Spns2 may be an attractive target for immune suppressive drugs.


Environmental Health Perspectives | 2013

Coplanar polychlorinated biphenyls impair glucose homeostasis in lean C57BL/6 mice and mitigate beneficial effects of weight loss on glucose homeostasis in obese mice.

Nicki A. Baker; Michael Karounos; Victoria L. English; Jun Fang; Yinan Wei; Arnold J. Stromberg; Manjula Sunkara; Andrew J. Morris; Hollie I. Swanson; Lisa A. Cassis

Background: Previous studies demonstrated that coplanar polychlorinated biphenyls (PCBs) promote proinflammatory gene expression in adipocytes. PCBs are highly lipophilic and accumulate in adipose tissue, a site of insulin resistance in persons with type 2 diabetes. Objectives: We investigated the in vitro and in vivo effects of coplanar PCBs on adipose expression of tumor necrosis factor α (TNF-α) and on glucose and insulin homeostasis in lean and obese mice. Methods: We quantified glucose and insulin tolerance, as well as TNF-α levels, in liver, muscle, and adipose tissue of male C57BL/6 mice administered vehicle, PCB-77, or PCB-126 and fed a low fat (LF) diet. Another group of mice administered vehicle or PCB-77 were fed a high fat (HF) diet for 12 weeks; the diet was then switched from HF to LF for 4 weeks to induce weight loss. We quantified glucose and insulin tolerance and adipose TNF-α expression in these mice. In addition, we used in vitro and in vivo studies to quantify aryl hydrocarbon receptor (AhR)-dependent effects of PCB-77 on parameters of glucose homeostasis. Results: Treatment with coplanar PCBs resulted in sustained impairment of glucose and insulin tolerance in mice fed the LF diet. In PCB-77–treated mice, TNF-α expression was increased in adipose tissue but not in liver or muscle. PCB-77 levels were strikingly higher in adipose tissue than in liver or serum. Antagonism of AhR abolished both in vitro and in vivo effects of PCB-77. In obese mice, PCB-77 had no effect on glucose homeostasis, but glucose homeostasis was impaired after weight loss. Conclusions: Coplanar PCBs impaired glucose homeostasis in lean mice and in obese mice following weight loss. Adipose-specific elevations in TNF-α expression by PCBs may contribute to impaired glucose homeostasis.


Stem Cells | 2013

Ceramide-1-Phosphate Regulates Migration of Multipotent Stromal Cells and Endothelial Progenitor Cells—Implications for Tissue Regeneration†‡§

Chihwa Kim; Gabriela Schneider; Ahmed Abdel-Latif; Kasia Mierzejewska; Manjula Sunkara; Sylwia Borkowska; Janina Ratajczak; Andrew J. Morris; Magda Kucia; Mariusz Z. Ratajczak

Ceramide‐1‐phosphate (C1P) is a bioactive lipid that, in contrast to ceramide, is an antiapoptotic molecule released from cells that are damaged and “leaky.” As reported recently, C1P promotes migration of hematopoietic cells. In this article, we tested the hypothesis that C1P released upon tissue damage may play an underappreciated role in chemoattraction of various types of stem cells and endothelial cells involved in tissue/organ regeneration. We show for the first time that C1P is upregulated in damaged tissues and chemoattracts bone marrow (BM)‐derived multipotent stromal cells, endothelial progenitor cells, and very small embryonic‐like stem cells. Furthermore, compared to other bioactive lipids, C1P more potently chemoattracted human umbilical vein endothelial cells and stimulated tube formation by these cells. C1P also promoted in vivo vascularization of Matrigel implants and stimulated secretion of stromal cell‐derived factor‐1 from BM‐derived fibroblasts. Thus, our data demonstrate, for the first time, that C1P is a potent bioactive lipid released from damaged cells that potentially plays an important and novel role in recruitment of stem/progenitor cells to damaged organs and may promote their vascularization. STEM CELLS2013;31:500–510


Toxicology and Applied Pharmacology | 2011

Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls.

Zuzana Majkova; Joseph D. Layne; Manjula Sunkara; Andrew J. Morris; Michal Toborek; Bernhard Hennig

Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6ω-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-κB (NF-κB). A₄/J₄-neuroprostanes (NPs) were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH₄), which concurrently abrogated A₄/J₄-NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1) by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A₄/J₄ NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5ω-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2) and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A₄/J₄-NPs as mediators of omega-3 fatty acid-mediated protection against the endothelial toxicity of coplanar PCBs.


Journal of Medicinal Chemistry | 2010

Discovery, biological evaluation, and structure-activity relationship of amidine based sphingosine kinase inhibitors.

Thomas P. Mathews; Andrew J. Kennedy; Yugesh Kharel; Perry C. Kennedy; Oana Nicoara; Manjula Sunkara; Andrew J. Morris; Brian R. Wamhoff; Kevin R. Lynch; Timothy L. Macdonald

Sphingosine 1-phosphate (S1P), a potent phospholipid growth and trophic factor, is synthesized in vivo by two sphingosine kinases. Thus these kinases have been proposed as important drug targets for treatment of hyperproliferative diseases and inflammation. We report here a new class of amidine-based sphingosine analogues that are competitive inhibitors of sphingosine kinases exhibiting varying degrees of enzyme selectivity. These inhibitors display K(I) values in the submicromolar range for both sphingosine kinases and, in cultured vascular smooth muscle cells, decrease S1P levels and initiate growth arrest.


Molecular Endocrinology | 2012

Autotaxin and Its Product Lysophosphatidic Acid Suppress Brown Adipose Differentiation and Promote Diet-Induced Obesity in Mice

Lorenzo Federico; Hongmei Ren; Paul Mueller; Tao Wu; Shuying Liu; Jelena Popovic; Eric M. Blalock; Manjula Sunkara; Huib Ovaa; Harald M. H. G. Albers; Gordon B. Mills; Andrew J. Morris; Susan S. Smyth

Brown adipose tissue is a thermogenic organ that dissipates stored energy as heat to maintain body temperature. This process may also provide protection from development of diet-induced obesity. We report that the bioactive lipid mediator lysophosphatidic acid (LPA) markedly decreases differentiation of cultured primary brown adipocyte precursors, whereas potent selective inhibitors of the LPA-generating enzyme autotaxin (ATX) promote differentiation. Transgenic mice overexpressing ATX exhibit reduced expression of brown adipose tissue-related genes in peripheral white adipose tissue and accumulate significantly more fat than wild-type controls when fed a high-fat diet. Our results indicate that ATX and its product LPA are physiologically relevant negative regulators of brown fat adipogenesis and are consistent with a model in which a decrease in mature peripheral brown adipose tissue results in increased susceptibility to diet-induced obesity in mice.

Collaboration


Dive into the Manjula Sunkara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge