Manjunath L. Keremane
National Clonal Germplasm Repository
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manjunath L. Keremane.
Journal of Economic Entomology | 2011
Casey D. Butler; Frank J. Byrne; Manjunath L. Keremane; Richard F. Lee; John T. Trumble
ABSTRACT The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera:Triozidae), is a serious pest of potatoes (Solanum tuberosum L.) that can cause yield loss by direct feeding on crop plants and by vectoring a bacterial pathogen, Candidatus Liberibacer psyllaurous. Current pest management practices rely on the use of insecticides to control the potato psyllid to lower disease incidences and increase yields. Although many studies have focused on the mortality that insecticides can cause on potato psyllid populations, little is known regarding the behavioral responses of the potato psyllid to insecticides or whether insecticides can decrease pathogen transmission. Thus, the objectives of this study were to determine the effects of insecticides on adult potato psyllid behaviors, the residual effects of insecticides on potato psyllid behaviors over time, and effects of these insecticides on Ca. L. psyllaurous transmission. Insecticides tested included imidacloprid, kaolin particle film, horticultural spray oil, abamectin, and pymetrozine. All insecticides significantly reduced probing durations and increased the amount of time adult psyllids spent off the leaflets, suggesting that these chemicals may be deterrents to feeding as well as repellents. Nonfeeding behaviors such as tasting, resting, and cleaning showed variable relationships with the different insecticide treatments over time. The insecticides imidacloprid and abamectin significantly lowered transmission of Ca. L. psyllaurous compared with untreated controls. The implications of our results for the selection of insecticides useful for an integrated pest management program for potato psyllid control are discussed.
Journal of Integrative Plant Biology | 2016
John V. da Graça; Greg W. Douhan; Susan E. Halbert; Manjunath L. Keremane; Richard F. Lee; Georgios Vidalakis; Hongwei Zhao
Citrus huanglongbing (HLB) has become a major disease and limiting factor of production in citrus areas that have become infected. The destruction to the affected citrus industries has resulted in a tremendous increase to support research that in return has resulted in significant information on both applied and basic knowledge concerning this important disease to the global citrus industry. Recent research indicates the relationship between citrus and the causal agent of HLB is shaped by multiple elements, in which host defense responses may also play an important role. This review is intended to provide an overview of the importance of HLB to a wider audience of plant biologists. Recent advances on host-pathogen interactions, population genetics and vectoring of the causal agent are discussed.
PLOS ONE | 2013
Chandrika Ramadugu; Bernard E. Pfeil; Manjunath L. Keremane; Richard F. Lee; Iván J. Maureira-Butler; Mikeal L. Roose
Background Genus Citrus (Rutaceae) comprises many important cultivated species that generally hybridize easily. Phylogenetic study of a group showing extensive hybridization is challenging. Since the genus Citrus has diverged recently (4–12 Ma), incomplete lineage sorting of ancestral polymorphisms is also likely to cause discrepancies among genes in phylogenetic inferences. Incongruence of gene trees is observed and it is essential to unravel the processes that cause inconsistencies in order to understand the phylogenetic relationships among the species. Methodology and Principal Findings (1) We generated phylogenetic trees using haplotype sequences of six low copy nuclear genes. (2) Published simple sequence repeat data were re-analyzed to study population structure and the results were compared with the phylogenetic trees constructed using sequence data and coalescence simulations. (3) To distinguish between hybridization and incomplete lineage sorting, we developed and utilized a coalescence simulation approach. In other studies, species trees have been inferred despite the possibility of hybridization having occurred and used to generate null distributions of the effect of lineage sorting alone (by coalescent simulation). Since this is problematic, we instead generate these distributions directly from observed gene trees. Of the six trees generated, we used the most resolved three to detect hybrids. We found that 11 of 33 samples appear to be affected by historical hybridization. Analysis of the remaining three genes supported the conclusions from the hybrid detection test. Conclusions We have identified or confirmed probable hybrid origins for several Citrus cultivars using three different approaches–gene phylogenies, population structure analysis and coalescence simulation. Hybridization and incomplete lineage sorting were identified primarily based on differences among gene phylogenies with reference to null expectations via coalescence simulations. We conclude that identifying hybridization as a frequent cause of incongruence among gene trees is critical to correctly infer the phylogeny among species of Citrus.
Frontiers in Microbiology | 2013
Richard F. Lee; Manjunath L. Keremane
Tristeza, caused by Citrus tristeza virus (CTV), has long been present in Florida but outbreaks of decline on sour orange rootstock were occasional events until the late 1970s. Sour orange rootstock was valued for the high quality of fruit produced and was widely used because of its tolerance of citrus blight, a disease of unknown etiology. Research was directed towards the selection and screening of mild strains of CTV which could protect against sour orange decline strains. Following the introduction of Toxoptera citricida (also known as the brown citrus aphid) in 1995 there was a greater concern for maintaining production of existing blocks of citrus on sour orange rootstock. Availability of the CTV genome sequence around the same time as well as molecular characterization of in planta CTV populations led to the selection of mild CTV isolates which when inoculated into existing field trees, extended the productive life of the groves and enabled a more graduate replanting of trees on CTV-tolerant rootstocks. The history of CTV in Florida and the methods developed to select mild isolates for use for mild strain cross protection will be reviewed.
Plant Disease | 2016
Chandrika Ramadugu; Manjunath L. Keremane; Susan E. Halbert; Yong Ping Duan; Mikeal L. Roose; Ed Stover; Richard F. Lee
Citrus huanglongbing (HLB) is a destructive disease with no known cure. To identify sources of HLB resistance in the subfamily Aurantioideae to which citrus belongs, we conducted a six-year field trial under natural disease challenge conditions in an HLB endemic region. The study included 65 Citrus accessions and 33 accessions belonging to 20 other closely related genera. For each accession, eight seedling trees were evaluated. Based on quantitative polymerase chain reaction analysis of the pathogen titers and disease symptoms, eight disease-response categories were identified. We report two immune, six resistant, and 14 tolerant accessions. Resistance and tolerance observed in different accessions may be attributed to a multitude of factors, including psyllid colonization ability, absence of pathogen multiplication, transient replication of the bacterium, lack of pathogen establishment in the plant, delayed infection, or recovery from infection. Most citrus cultivars were considered susceptible: 15 citrons, lemons, and limes retained leaves in spite of the disease status. Resistance and high levels of field tolerance were observed in many noncitrus genera. Disease resistance/tolerance was observed in Australian citrus relative genera Eremocitrus and Microcitrus, which are sexually compatible with citrus and may be useful in future breeding trials to impart HLB resistance to cultivated citrus.
Plant Physiology | 2017
Eugenio Butelli; Andres Garcia-Lor; C. Licciardello; Giuseppina Las Casas; Lionel Hill; Giuseppe Reforgiato Recupero; Manjunath L. Keremane; Chandrika Ramadugu; Robert R. Krueger; Qiang Xu; Xiuxin Deng; Anne-Laure Fanciullino; Yann Froelicher; Luis Navarro; Cathie Martin
Ruby, a regulatory gene encoding a MYB transcription factor, is essential for anthocyanin production, and differences in its activity determine most of the natural variation in pigmentation in Citrus and related genera. Mandarin (Citrus reticulata), citron (Citrus medica), and pummelo (Citrus maxima) are important species of the genus Citrus and parents of the interspecific hybrids that constitute the most familiar commercial varieties of Citrus: sweet orange, sour orange, clementine, lemon, lime, and grapefruit. Citron produces anthocyanins in its young leaves and flowers, as do species in genera closely related to Citrus, but mandarins do not, and pummelo varieties that produce anthocyanins have not been reported. We investigated the activity of the Ruby gene, which encodes a MYB transcription factor controlling anthocyanin biosynthesis, in different accessions of a range of Citrus species and in domesticated cultivars. A white mutant of lemon lacks functional alleles of Ruby, demonstrating that Ruby plays an essential role in anthocyanin production in Citrus. Almost all the natural variation in pigmentation by anthocyanins in Citrus species can be explained by differences in activity of the Ruby gene, caused by point mutations and deletions and insertions of transposable elements. Comparison of the allelic constitution of Ruby in different species and cultivars also helps to clarify many of the taxonomic relationships in different species of Citrus, confirms the derivation of commercial varieties during domestication, elucidates the relationships within the subgenus Papeda, and allows a new genetic classification of mandarins.
Hortscience | 2017
Godfrey P. Miles; Ed Stover; Chandrika Ramadugu; Manjunath L. Keremane; Richard F. Lee
Abstract. In a Fort Pierce, FL, field planting, plant growth, and Huanglongbing (HLB) severity were assessed as indicators of HLB tolerance on progenies of 83 seed-source accessions of Citrus and Citrus relatives mainly from the Riverside, CA, genebank. The HLB-associated pathogen [Candidatus Liberibacter asiaticus (CLas)] and vector [asian citrus psyllid (ACP), Diaphorina citri] were abundant, and trees were naturally challenged for 6 years before metrics (leaf mottle, percent canopy mottle, overall health, canopy density, canopy width, canopy height, and trunk diameter) were collected in Oct. and Nov. 2015. The healthiest trees with low or no HLB symptoms were distant citrus relatives: Balsamocitrus dawei, Bergera koenigii, Casimiroa edulis, Clausena excavata, Murraya paniculata, and one accession of Severinia buxifolia. Within Citrus, most of the healthiest trees with densest canopies, little leaf loss, and greater growth were those with pedigrees that included Citrus medica (citron). These included progenies of Citrus hybrid (‘Limon Real’), Citrus limetta, Citrus limettioides, Citrus limonia, C. medica, Citrus volkameriana, and some Citrus limon accessions. Trees in this category exhibited distinct leaf-mottle characteristic of HLB and substantial pathogen titers, but maintained dense canopies and exhibited good growth. Trees from seed-source accessions in the genus Citrus without citron in their background were generally among the least healthy overall with less dense canopies. The exceptions were progenies of two Citrus aurantium accessions, which were markedly healthier than progenies of other Citrus seed-source accessions not derived from citron. Linear regression analysis, between metrics collected and pedigree of seed parent, indicated that percentage of citron in the pedigree significantly correlated with measures of tolerance. Although no commercial Citrus genotypes yielded progenies with strong HLB resistance, in this field experiment several progenies maintained dense canopies and good growth, and may be useful for breeding HLB tolerant cultivars.
Molecular and Cellular Probes | 2012
J. Kent Morgan; Lijuan Zhou; Wenbin Li; Robert G. Shatters; Manjunath L. Keremane; Yongping Duan
Phytopathology | 2014
Muhammad Fakhar-ud-Din Razi; Manjunath L. Keremane; Chandrika Ramadugu; Mikeal L. Roose; Iqrar Ahmad Khan; Richard F. Lee
European Journal of Plant Pathology | 2016
Mpoki M. Shimwela; Hossein A. Narouei-Khandan; Susan E. Halbert; Manjunath L. Keremane; Gerald V. Minsavage; Sujan Timilsina; Deogracious Protas Massawe; Jeffrey B. Jones; Ariena H. C. van Bruggen