Manjunatha B. Bhat
Cleveland Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manjunatha B. Bhat.
Journal of Biological Chemistry | 1999
Kaisa M. Heiskanen; Manjunatha B. Bhat; Hsing-Wen Wang; Jianjie Ma; Anna-Liisa Nieminen
Cytochrome c is released from mitochondria into the cytosol in cells undergoing apoptosis. The temporal relationship between cytochrome c release and loss of mitochondrial membrane potential was monitored by laser-scanning confocal microscopy in single living pheochromocytoma-6 cells undergoing apoptosis induced by staurosporine. Mitochondrial membrane potential monitored by tetramethylrhodamine methyl ester decreased abruptly in individual cells from 2 to 7 h after treatment with staurosporine. Depolarization was accompanied by cytochromec release documented by release of transfected green fluorescent protein-tagged cytochrome c in these cells. The results show that mitochondrial depolarization accompanies cytochromec release in pheochromocytoma-6 cells undergoing apoptosis.
Biophysical Journal | 1997
Manjunatha B. Bhat; Jiying Zhao; Hiroshi Takeshima; Jianjie Ma
The ryanodine receptor (RyR) is one of the key proteins involved in excitation-contraction (E-C) coupling in skeletal muscle, where it functions as a Ca2+ release channel in the sarcoplasmic reticulum (SR) membrane. RyR consists of a single polypeptide of approximately 560 kDa normally arranged in a homotetrameric structure, which contains a carboxyl (C)-terminal transmembrane domain and a large amino (N)-terminal cytoplasmic domain. To test whether the carboxyl-terminal portion of RyR is sufficient to form a Ca2+ release channel, we expressed the full-length (RyR-wt) and C-terminal (RyR-C, approximately 130 kDa) RyR proteins in a Chinese hamster ovary (CHO) cell line, and measured their Ca2+ release channel functions in planar lipid bilayer membranes. The single-channel properties of RyR-wt were found to be similar to those of RyR from skeletal muscle SR. The RyR-C protein forms a cation-selective channel that shares some of the channel properties with RyR-wt, including activation by cytoplasmic Ca2+ and regulation by ryanodine. Unlike RyR-wt, which exhibits a linear current-voltage relationship and inactivates at millimolar Ca2+, the channels formed by RyR-C display significant inward rectification and fail to close at high cytoplasmic Ca2+. Our results show that the C-terminal portion of RyR contains structures sufficient to form a functional Ca2+ release channel, but the N-terminal portion of RyR also affects the ion-conduction and calcium-dependent regulation of the Ca2+ release channel.
Journal of Biological Chemistry | 2006
Antonia Miller; Dawn Smith; Manjunatha B. Bhat; Ram H. Nagaraj
Retinal capillary pericytes undergo premature death, possibly by apoptosis, during the early stages of diabetic retinopathy. The α-oxoaldehyde, methylglyoxal (MGO), has been implicated as a cause of cell damage in diabetes. We have investigated the role of MGO and its metabolizing enzyme, glyoxalase I, in high glucose-induced apoptosis (annexin V binding) of human retinal pericyte (HRP). HRP incubated with high glucose (30 mm d-glucose) for 7 days did not undergo apoptosis despite accumulation of MGO. However, treatment with a combination of high glucose and S-p-bromobenzylglutathione cyclopentyl diester, a competitive inhibitor of glyoxalase I, resulted in apoptosis along with a dramatic increase in MGO. Overexpression of glyoxalase I in HRP protected against S-p-bromobenzylglutathione cyclopentyl diester-induced apoptosis under high glucose conditions. Incubation of HRP with high concentrations of MGO resulted in an increase of apoptosis relative to untreated controls. We found an elevation of nitric oxide (NO·) in HRP that was incubated with high glucose when compared with those incubated with either the l-glucose or untreated controls. When HRP were incubated with an NO· donor, DETANONOATE ((Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate), we observed both decreased glyoxalase I expression and activity relative to untreated control cells. Further studies showed that HRP underwent apoptosis when incubated with DETANONOATE and that apoptosis increased further on co-incubation with high glucose. Our findings indicate that glyoxalase I is critical for pericyte survival under hyperglycemic conditions, and its inactivation and/or down-regulation by NO· may contribute to pericyte death by apoptosis during the early stages of diabetic retinopathy.
Biophysical Journal | 2000
Xuehong Xu; Manjunatha B. Bhat; Miyuki Nishi; Hiroshi Takeshima; Jianjie Ma
Ryanodine is a plant alkaloid that was originally used as an insecticide. To study the function and regulation of the ryanodine receptor (RyR) from insect cells, we have cloned the entire cDNA sequence of RyR from the fruit fly Drosophila melanogaster. The primary sequence of the Drosophila RyR contains 5134 amino acids, which shares approximately 45% identity with RyRs from mammalian cells, with a large cytoplasmic domain at the amino-terminal end and a small transmembrane domain at the carboxyl-terminal end. To characterize the Ca(2+) release channel activity of the cloned Drosophila RyR, we expressed both full-length and a deletion mutant of Drosophila RyR lacking amino acids 277-3650 (Drosophila RyR-C) in Chinese hamster ovary cells. For subcellular localization of the expressed Drosophila RyR and Drosophila RyR-C proteins, green fluorescent protein (GFP)-Drosophila RyR and GFP-Drosophila RyR-C fusion constructs were generated. Confocal microscopic imaging identified GFP-Drosophila RyR and GFP-Drosophila RyR-C on the endoplasmic reticulum membranes of transfected cells. Upon reconstitution into the lipid bilayer membrane, Drosophila RyR-C formed a large conductance cation-selective channel, which was sensitive to modulation by ryanodine. Opening of the Drosophila RyR-C channel required the presence of microM concentration of Ca(2+) in the cytosolic solution, but the channel was insensitive to inhibition by Ca(2+) at concentrations as high as 20 mM. Our data are consistent with our previous observation with the mammalian RyR that the conduction pore of the calcium release channel resides within the carboxyl-terminal end of the protein and further demonstrate that structural and functional features are essentially shared by mammalian and insect RyRs.
Molecular Biology of the Cell | 2008
Pinaki Chaudhuri; Scott M. Colles; Manjunatha B. Bhat; David R. Van Wagoner; Lutz Birnbaumer; Linda M. Graham
Canonical transient receptor potential (TRPC) channels are opened by classical signal transduction events initiated by receptor activation or depletion of intracellular calcium stores. Here, we report a novel mechanism for opening TRPC channels in which TRPC6 activation initiates a cascade resulting in TRPC5 translocation. When endothelial cells (ECs) are incubated in lysophosphatidylcholine (lysoPC), rapid translocation of TRPC6 initiates calcium influx that results in externalization of TRPC5. Activation of this TRPC6-5 cascade causes a prolonged increase in intracellular calcium concentration ([Ca(2+)](i)) that inhibits EC movement. When TRPC5 is down-regulated with siRNA, the lysoPC-induced rise in [Ca(2+)](i) is shortened and the inhibition of EC migration is lessened. When TRPC6 is down-regulated or EC from TRPC6(-/-) mice are studied, lysoPC has minimal effect on [Ca(2+)](i) and EC migration. In addition, TRPC5 is not externalized in response to lysoPC, supporting the dependence of TRPC5 translocation on the opening of TRPC6 channels. Activation of this novel TRPC channel cascade by lysoPC, resulting in the inhibition of EC migration, could adversely impact on EC healing in atherosclerotic arteries where lysoPC is abundant.
Journal of Biological Chemistry | 2003
Dong Wook Shin; Zui Pan; Eun Kyung Kim; Jae Man Lee; Manjunatha B. Bhat; Jerome Parness; Do Han Kim; Jianjie Ma
Calsequestrin (CSQ) is a high capacity Ca2+-binding protein present in the lumen of sarcoplasmic reticulum (SR) in striated muscle cells and has been shown to regulate the ryanodine receptor Ca2+ release channel activity through interaction with other proteins present in the SR. Here we show that overexpression of wild-type CSQ or a CSQ mutant lacking the junction binding region (amino acids 86–191; Δjunc-CSQ) in mouse skeletal C2C12 myotube enhanced caffeine- and voltage-induced Ca2+ release by increasing the Ca2+ load in SR, whereas overexpression of a mutant CSQ lacking a Ca2+ binding, aspartate-rich domain (amino acids 352–367; Δasp-CSQ) showed the opposite effects. Depletion of SR Ca2+ by thapsigargin initiated store-operated Ca2+ entry (SOCE) in C2C12 myotubes. A large component of SOCE was inhibited by overexpression of wild-type CSQ or Δjunc-CSQ, whereas myotubes transfected with Δasp-CSQ exhibited normal function of SOCE. These results indicate that the aspartate-rich segment of CSQ, under conditions of overexpression, can sustain structural interactions that interfere with the SOCE mechanism. Such retrograde activation mechanisms are possibly taking place at the junctional site of the SR.
Journal of Biological Chemistry | 1998
Minh Lam; Manjunatha B. Bhat; Gabriel Núñez; Jianjie Ma; Clark W. Distelhorst
Recent studies have demonstrated that the anti-apoptotic proteins, Bcl-2 and Bcl-xl, with the carboxyl-terminal hydrophobic domain removed, form cation-selective channels in the lipid bilayer reconstitution system. However, the regulatory properties of these channels are unknown. In this study, we investigated the ion-conducting properties of full-length Bcl-xl in the lipid bilayer reconstitution system. Our findings indicate that Bcl-xl forms a cation-selective channel that conducts sodium but not calcium and that Bcl-xl channel activity is reversibly inhibited by luminal calcium with a half-dissociation constant of ∼60 μm. This calcium-dependent regulation of the Bcl-xl channel provides new insights into the roles of calcium and Bcl-2-related proteins in the programmed cell death pathway.
Biophysical Journal | 2002
Dong Wook Shin; Zui Pan; Arun Bandyopadhyay; Manjunatha B. Bhat; Do Han Kim; Jianjie Ma
Calcineurin is a Ca(2+) and calmodulin-dependent protein phosphatase with diverse cellular functions. Here we examined the physical and functional interactions between calcineurin and ryanodine receptor (RyR) in a C2C12 cell line derived from mouse skeletal muscle. Coimmunoprecipitation experiments revealed that the association between RyR and calcineurin exhibits a strong Ca(2+) dependence. This association involves a Ca(2+) dependent interaction between calcineurin and FK506-binding protein (FKBP12), an accessory subunit of RyR. Pretreatment with cyclosporin A, an inhibitor of calcineurin, enhanced the caffeine-induced Ca(2+) release (CICR) in C2C12 cells. This effect was similar to those of FK506 and rapamycin, two drugs known to cause dissociation of FKBP12 from RyR. Overexpression of a constitutively active form of calcineurin in C2C12 cells, DeltaCnA(391-521) (deletion of the last 131 amino acids from calcineurin), resulted in a decrease in CICR. This decrease in CICR activity was partially recovered by pretreatment with cyclosporin A. Furthermore, overexpression of an endogenous calcineurin inhibitor (cain) or an inactive form of calcineurin (DeltaCnA(H101Q)) in C2C12 cells resulted in up-regulation of CICR. Taken together, our data suggest that a trimeric-interaction among calcineurin, FKBP12, and RyR is important for the regulation of the RyR channel activity and may play an important role in the Ca(2+) signaling of muscle contraction and relaxation.
Biophysical Journal | 1995
Jianjie Ma; Manjunatha B. Bhat; Jiying Zhao
The cytosolic receptor for immunosuppressant drugs, FK506 binding protein (FKBP12), maintains a tight association with ryanodine receptors of sarcoplasmic reticulum (SR) membrane in skeletal muscle. The interaction between FKBP12 and ryanodine receptors resulted in distinct rectification of the Ca release channel. The endogenous FKBP-bound Ca release channel conducted current unidirectionally from SR lumen to myoplasm; in the opposite direction, the channel deactivated with fast kinetics. The binding of FKBP12 is likely to alter subunit interactions within the ryanodine receptor complex, as revealed by changes in conductance states of the channel. Both on- and off-rates of FKBP12 binding to the ryanodine receptor showed clear dependence on the membrane potential, suggesting that the binding sites of FKBP12 reside in or near the conduction pore of the Ca release channel. Rectification of the Ca release channel would prevent counter-current flow during the rapid release of Ca from SR membrane, and thus may serve as a negative feedback mechanism that participates in the process of muscle excitation-contraction coupling.
Journal of Pharmacology and Experimental Therapeutics | 2009
Qing Liu; Manjunatha B. Bhat; Wayne D. Bowen; Jianguo Cheng
Although the activation of cannabinoid receptor-1 (CB1) receptors by cannabinoids is known to inhibit neuronal hyperexcitability and reduce excitotoxic cell death, the mechanistic links between these two actions remain elusive. We tested the hypothesis that activation of CB1 receptors inhibits N-methyl-d-aspartic acid (NMDA)-mediated calcium influx and cell death via the inositol triphosphate (IP3) signaling pathway in both primary dorsal root ganglia neurons and a cultured neuronal cell line (F-11 cells). These cells were pretreated with the cannabinoid agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de)-1,4-benzoxazin-6-yl]-1-napthalenylmethanone (R-(+)-WIN 55,212-2; WIN) before exposure to NMDA. Concentrations of cytosolic calcium were measured with the ratiometric calcium indicator, Fura-2, and cell death was determined by a cell viability test. WIN dose-dependently attenuated both the calcium influx and cell death induced by NMDA. These effects were blocked by selective cannabinoid CB1 receptor antagonists N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716A) or N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), but not CB2 receptor antagonist N-[(1S)-endo-1,3,3,-trimethylbicyclo[2.2.1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methyl-benzyl)-pyrazole-3-carboxamide (SR144528). It is interesting to note that a transient Ca2+ signal was observed after the acute application of WIN. This Ca2+ increase was blocked by a CB1 receptor antagonist AM251, IP3 receptor antagonist 2- aminoethyl diphenylborinate, or by depleting intracellular Ca2+ stores with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin. Removal of extracellular Ca2+, on the other hand, had no effect on the CB1 receptor-induced Ca2+ increase. These data suggest that WIN triggers a cascade of events: it activates the CB1 receptor and the IP3 signaling pathway, stimulates the release of Ca2+ from intracellular stores, raises the cytosolic Ca2+ levels, and inhibits the NMDA-mediated Ca2+ influx and cell death through a process that remains to be determined.