Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manli Chuai is active.

Publication


Featured researches published by Manli Chuai.


Nature Cell Biology | 2015

Myosin-II-mediated cell shape changes and cell intercalation contribute to primitive streak formation

Emil Rozbicki; Manli Chuai; Antti I. Karjalainen; Feifei Song; Helen Sang; René Martin; Hans-Joachim Knölker; Michael P. MacDonald; Cornelis J. Weijer

Primitive streak formation in the chick embryo involves large-scale highly coordinated flows of more than 100,000 cells in the epiblast. These large-scale tissue flows and deformations can be correlated with specific anisotropic cell behaviours in the forming mesendoderm through a combination of light-sheet microscopy and computational analysis. Relevant behaviours include apical contraction, elongation along the apical–basal axis followed by ingression, and asynchronous directional cell intercalation of small groups of mesendoderm cells. Cell intercalation is associated with sequential, directional contraction of apical junctions, the onset, localization and direction of which correlate strongly with the appearance of active myosin II cables in aligned apical junctions in neighbouring cells. Use of class specific myosin inhibitors and gene-specific knockdown shows that apical contraction and intercalation are myosin II dependent and also reveal critical roles for myosin I and myosin V family members in the assembly of junctional myosin II cables.


Current Topics in Developmental Biology | 2008

The Mechanisms Underlying Primitive Streak Formation in the Chick Embryo

Manli Chuai; Cornelis J. Weijer

Formation of the primitive streak is one of the key events in the early development of amniote embryos. The streak is the site where during gastrulation the mesendoderm cells ingress to take up their correct topographical positions in the embryo. The process of streak formation can be conveniently observed in the chick embryo, where the streak forms as an accumulation of cells in the epiblast in the posterior pole of the embryo and extends subsequently in anterior direction until it covers 80% of the epiblast. A prerequisite for streak formation is the differentiation of mesoderm, which is induced in the epiblast at the interface between the posterior Area Opaca and Area Pellucida in a sickle shaped domain overlying Kollers sickle. Current views on the molecular mechanisms of mesoderm induction by inducing signals from the Area Opaca and inhibitory signals from the hypoblast are briefly discussed. During streak formation the sickle of mesoderm cells transforms into an elongated structure in the central midline of the embryo. We discuss possible cellular mechanisms underlying this process, such as oriented cell division, cell-cell intercalation, chemotactic cell movement in response to attractive and repulsive signals and a combination of chemotaxis and contact following. We review current experimental evidence in favor and against these different hypotheses and outline some the outstanding questions. Since many of the interactions between cells signaling and moving are dynamic and nonlinear in nature they will require detailed modeling and computer simulations to be understood in detail.


Current Opinion in Genetics & Development | 2009

Regulation of cell migration during chick gastrulation.

Manli Chuai; Cornelis J. Weijer

Gastrulation in chick starts with large-scale cell flows in the epiblast and hypoblast, which transport the mesendoderm into the midline of the embryo to form the primitive streak. Several mechanisms such as cell-cell intercalation, deformations of the extracellular matrix and directed cell movements in response to chemical gradients have been proposed to play a role in streak formation. In the streak the epiblast cells undergo an epithelial to mesenchymal transition (EMT), which involves the breakdown of apical junctions and changes in RhoA-dependent signalling to integrins that mediated contact with the basal lamina. The collective migration of the mesendoderm away from the streak appears to be controlled by gradients of growth factors of the FGF and VEGF and Wnt families and requires N-cadherin expression. The timing and order of ingression of epiblast cells appears to be controlled by temporal and spatial colinearity of Hox gene expression in the epiblast. The mechanisms by which Hox genes control these properties remain to be resolved.


PLOS ONE | 2012

Exploring the Caffeine-Induced Teratogenicity on Neurodevelopment Using Early Chick Embryo

Zheng-lai Ma; Yang Qin; Guang Wang; Xiao-Di Li; Rong-Rong He; Manli Chuai; Hiroshi Kurihara; Xuesong Yang

Caffeine consumption is worldwide. It has been part of our diet for many centuries; indwelled in our foods, drinks, and medicines. It is often perceived as a “legal drug”, and though it is known to have detrimental effects on our health, more specifically, disrupt the normal fetal development following excessive maternal intake, much ambiguity still surrounds the precise mechanisms and consequences of caffeine-induced toxicity. Here, we employed early chick embryos as a developmental model to assess the effects of caffeine on the development of the fetal nervous system. We found that administration of caffeine led to defective neural tube closures and expression of several abnormal morphological phenotypes, which included thickening of the cephalic mesenchymal tissues and scattering of somites. Immunocytochemistry of caffeine-treated embryos using neural crest cell markers also demonstrated uncharacteristic features; HNK1 labeled migratory crest cells exhibited an incontinuous dorsal-ventral migration trajectory, though Pax7 positive cells of the caffeine-treated groups were comparatively similar to the control. Furthermore, the number of neurons expressing neurofilament and the degree of neuronal branching were both significantly reduced following caffeine administration. The extent of these effects was dose-dependent. In conclusion, caffeine exposure can result in malformations of the neural tube and induce other teratogenic effects on neurodevelopment, although the exact mechanism of these effects requires further investigation.


International Journal of Cardiology | 2014

Excess ROS induced by AAPH causes myocardial hypertrophy in the developing chick embryo

Yan Li; Xiao-yu Wang; Zhao-long Zhang; Xin Cheng; Xiao-Di Li; Manli Chuai; Kenneth Ka Ho Lee; Hiroshi Kurihara; Xuesong Yang

BACKGROUND The developing embryo is very sensitive to oxidative stress and excess reactive oxygen species (ROS) generation is often associated with cardiovascular malformation. However, little is known about the adverse effects of ROS during heart morphogenesis, especially during the formation of the atria and ventricles. METHODS AND RESULTS We have treated early chick embryos with 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH) to generate free radicals in the developing heart. We established that excess ROS induced by AAPH caused cardiomegaly to develop in 4-, 14- and 17-day-old embryos. The cardiomyocytes of these AAPH-treated hearts were hypertrophic, in both the compact and trabeculated myocardium. The weight of these hearts was also significantly increased in an AAPH dose-dependent fashion. We examined and compared the functions of the AAPH-treated and untreated hearts by echocardiography and determined that the ejection fraction was shortened. BrdU incorporation assay was performed and revealed that cell proliferation was not the main cause of cardiomegaly. However, we established that the cardiomyocytes exposed to excess ROS were distinctively larger than control cardiomyocytes - indicting that cardiomegaly was attributed to hypertrophy. We have also found that excess ROS inhibited Wnt signaling but enhanced VEGF signaling. Consequently, this promoted angiogenesis and caused larger coronary arteries to develop in the AAPH-treated hearts. CONCLUSIONS We have demonstrated that cardiomyocyte hypertrophy and changes in Wnt and VEGF signaling were the main contributing factors in the development of cardiomegaly induced by oxidative stress.


Current Genomics | 2012

Collective epithelial and mesenchymal cell migration during gastrulation.

Manli Chuai; David A. Hughes; Cornelis J. Weijer

Gastrulation, the process that puts the three major germlayers, the ectoderm, mesoderm and endoderm in their correct topological position in the developing embryo, is characterised by extensive highly organised collective cell migration of epithelial and mesenchymal cells. We discuss current knowledge and insights in the mechanisms controlling these cell behaviours during gastrulation in the chick embryo. We discuss several ideas that have been proposed to explain the observed large scale vortex movements of epithelial cells in the epiblast during formation of the primitive streak. We review current insights in the control and execution of the epithelial to mesenchymal transition (EMT) underlying the formation of the hypoblast and the ingression of the mesendoderm cells through the streak. We discuss the mechanisms by which the mesendoderm cells move, the nature and dynamics of the signals that guide these movements, as well as the interplay between signalling and movement that result in tissue patterning and morphogenesis. We argue that instructive cell-cell signaling and directed chemotactic movement responses to these signals are instrumental in the execution of all phases of gastrulation.


PLOS ONE | 2011

Correlating cell behavior with tissue topology in embryonic epithelia.

Sebastian A. Sandersius; Manli Chuai; Cornelis J. Weijer; Timothy J. Newman

Measurements on embryonic epithelial tissues in a diverse range of organisms have shown that the statistics of cell neighbor numbers are universal in tissues where cell proliferation is the primary cell activity. Highly simplified non-spatial models of proliferation are claimed to accurately reproduce these statistics. Using a systematic critical analysis, we show that non-spatial models are not capable of robustly describing the universal statistics observed in proliferating epithelia, indicating strong spatial correlations between cells. Furthermore we show that spatial simulations using the Subcellular Element Model are able to robustly reproduce the universal histogram. In addition these simulations are able to unify ostensibly divergent experimental data in the literature. We also analyze cell neighbor statistics in early stages of chick embryo development in which cell behaviors other than proliferation are important. We find from experimental observation that cell neighbor statistics in the primitive streak region, where cell motility and ingression are also important, show a much broader distribution. A non-spatial Markov process model provides excellent agreement with this broader histogram indicating that cells in the primitive streak may have significantly weaker spatial correlations. These findings show that cell neighbor statistics provide a potentially useful signature of collective cell behavior.


Hfsp Journal | 2009

Who moves whom during primitive streak formation in the chick embryo

Manli Chuai; Cornelis J. Weijer

Gastrulation is a critical stage in the development of all vertebrates. During gastrulation mesendoderm cells move inside the embryo to form the gut, muscles, and skeleton. In amniotes the mesendoderm cells move inside the embryo through a structure known as the primitive streak, extending from the posterior pole anterior through the midline of the embryo. Primitive streak formation involves large scale cell flows of a layer of highly polarized epithelial epiblast cells. The epiblast is separated from a lower layer of hypoblast cells through a well developed basal lamina. Recent experiments in which in vivo extracellular matrix dynamics was followed via labeling with fibronectin specific fluorescent antibodies and time‐lapse microscopy have suggested that extracellular matrix dynamics essentially coincides with the observed epiblast cell displacements (Zamir et al., 2008, PLoS Biol 6, e247). These observations raise the important question of who moves whom and where do cells derive traction. We discuss these matters and their implications for our understanding of the mechanisms underlying cell flows during primitive streak formation in the chick embryo.


Journal of Cellular and Molecular Medicine | 2014

Excess caffeine exposure impairs eye development during chick embryogenesis

Zheng-lai Ma; Guang Wang; Xin Cheng; Manli Chuai; Hiroshi Kurihara; Kenneth Ka Ho Lee; Xuesong Yang

Caffeine has been an integral component of our diet and medicines for centuries. It is now known that over consumption of caffeine has detrimental effects on our health, and also disrupts normal foetal development in pregnant mothers. In this study, we investigated the potential teratogenic effect of caffeine over‐exposure on eye development in the early chick embryo. Firstly, we demonstrated that caffeine exposure caused chick embryos to develop asymmetrical microphthalmia and induced the orbital bone to develop abnormally. Secondly, caffeine exposure perturbed Pax6 expression in the retina of the developing eye. In addition, it perturbed the migration of HNK‐1+ cranial neural crest cells. Pax6 is an important gene that regulates eye development, so altering the expression of this gene might be the cause for the abnormal eye development. Thirdly, we found that reactive oxygen species (ROS) production was significantly increased in eye tissues following caffeine treatment, and that the addition of anti‐oxidant vitamin C could rescue the eyes from developing abnormally in the presence of caffeine. This suggests that excess ROS induced by caffeine is one of the mechanisms involved in the teratogenic alterations observed in the eye during embryogenesis. In sum, our experiments in the chick embryo demonstrated that caffeine is a potential teratogen. It causes asymmetrical microphthalmia to develop by increasing ROS production and perturbs Pax6 expression.


Toxicology and Applied Pharmacology | 2014

Biphasic influence of dexamethasone exposure on embryonic vertebrate skeleton development

Xin Cheng; Jian-long Chen; Zheng-lai Ma; Zhao-long Zhang; Shun Lv; Dong-mei Mai; Jia-jia Liu; Manli Chuai; Kenneth Ka Ho Lee; Chao Wan; Xuesong Yang

Dexamethasone (Dex) has anti-inflammatory and immunomodulatory properties against many conditions. There is a potential teratogenic risk, however, for pregnant women receiving Dex treatment. It has been claimed that Dex exposure during pregnancy could affect osteogenesis in the developing embryo, which still remains highly controversial. In this study, we employed chick embryos to investigate the effects of Dex exposure on skeletal development using combined in vivo and in vitro approach. First, we demonstrated that Dex (10(-8)-10(-6)μmol/egg) exposure resulted in a shortening of the developing long bones of chick embryos, and it accelerated the deposition of calcium salts. Secondly, histological analysis of chick embryo phalanxes exhibited Dex exposure inhibited the proliferation of chondrocytes, increased apoptosis of chondrocytes and osteocytes, and led to atypical arranged hypertrophic chondrocytes. The expression of genes related to skeletogenesis was also analyzed by semi-quantitative RT-PCR. The expression of ALP, Col1a2 and Col2a1 was decreased in the Dex treated phalanxes. A detectable increase was observed in Runx-2 and Mmp-13 expression. We next examined how Dex affected the different stages of skeletogenesis in vitro. Utilizing limb bud mesenchyme micromass cultures, we determined that Dex exposure exerted no effect on apoptosis but impaired chondrogenic cell proliferation. Interestingly, low dose of Dex moderately prompted nodule formation as revealed by alcian blue staining, but higher doses of Dex significantly inhibited similar chondrogenic differentiation. Dex exposure did not induce apoptosis when the chondrogenic precursors were still at the mesenchymal stage, however, cell viability was suppressed when the mesenchyme differentiated into chondrocytes. Alizarin red staining revealed that the capacity to form mineralized bone nodules was correspondingly enhanced as Dex concentrations increased. The mRNA level of Sox-9 was slightly increased in mesenchymal cell mass treated by low concentration of Dex. Mmp-13 expression was obviously up-regulated by Dex in both mesenchymal cells and primary chondrocyte cultures. And Col10a1 expression was also increased by Dex exposure in chondrocyte. In summary, we have revealed that different concentrations of Dex exposure during early gestation could exert a biphasic effect on vertebrate skeletal development.

Collaboration


Dive into the Manli Chuai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth Ka Ho Lee

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Li

Ministry of Education

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuai Li

Ministry of Education

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge