Manmeet Rawat
University of New Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manmeet Rawat.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2015
Prashant K. Nighot; Rana Al-Sadi; Manmeet Rawat; Shuhong Guo; D. Martin Watterson; Thomas Y. Ma
Recent studies have implicated a pathogenic role for matrix metalloproteinases 9 (MMP-9) in inflammatory bowel disease. Although loss of epithelial barrier function has been shown to be a key pathogenic factor for the development of intestinal inflammation, the role of MMP-9 in intestinal barrier function remains unclear. The aim of this study was to investigate the role of MMP-9 in intestinal barrier function and intestinal inflammation. Wild-type (WT) and MMP-9(-/-) mice were subjected to experimental dextran sodium sulfate (DSS) colitis by administration of 3% DSS in drinking water for 7 days. The mouse colonic permeability was measured in vivo by recycling perfusion of the entire colon using fluorescently labeled dextran. The DSS-induced increase in the colonic permeability was accompanied by an increase in intestinal epithelial cell MMP-9 expression in WT mice. The DSS-induced increase in intestinal permeability and the severity of DSS colitis was found to be attenuated in MMP-9(-/-) mice. The colonic protein expression of myosin light chain kinase (MLCK) and phospho-MLC was found to be significantly increased after DSS administration in WT mice but not in MMP-9(-/-) mice. The DSS-induced increase in colonic permeability and colonic inflammation was attenuated in MLCK(-/-) mice and MLCK inhibitor ML-7-treated WT mice. The DSS-induced increase in colonic surface epithelial cell MLCK mRNA was abolished in MMP-9(-/-) mice. Lastly, increased MMP-9 protein expression was detected within the colonic surface epithelial cells in ulcerative colitis cases. These data suggest a role of MMP-9 in modulation of colonic epithelial permeability and inflammation via MLCK.
Inflammatory Bowel Diseases | 2013
Prashant K. Nighot; Karen Young; Meghali P. Nighot; Manmeet Rawat; Eui J. Sung; Nitsan Maharshak; Scott E. Plevy; Thomas Y. Ma
Background:Previously, it was shown that the chloride channel ClC-2 modulates intestinal tight junction (TJ) barrier function. The aim of the present study was to investigate the role of ClC-2 in epithelial barrier function and recovery in the event of epithelial injury. Methods:The role of ClC-2 was investigated in TJ barrier function in dextran sodium sulfate (DSS)-induced colitis in ClC-2 knockout mice and ClC-2 knockdown intestinal Caco-2 cells. Barrier function was measured electrophysiologically and by transepithelial mannitol fluxes. Selected TJ and associated proteins were Western blotted, cytokines were measured using quantitative PCR, and human colonic biopsies were examined with immunohistochemistry. Results:ClC-2−/− mice had a higher disease activity index, higher histological scores, and increased paracellular permeability compared with wild-type mice when treated with DSS. DSS-treated ClC-2−/− mice had increased claudin-2 expression, greater loss of occludin in the membrane, increased association of occludin with caveolin-1, and significantly increased tumor necrosis factor-&agr; and interleukin-1&bgr; messenger RNA. ClC-2 knockdown in human intestinal Caco-2 cells resulted in a greater loss of epithelial resistance in the event of epithelial injury. The restoration of colonic barrier function after DSS colitis was delayed in ClC-2−/− mice. In human colonic biopsies, the protein and messenger RNA expression of ClC-2 was found to be reduced in patients with ulcerative colitis. Conclusions:ClC-2 plays a critical role in experimental colitis in that its absence increases disease activity, reduces barrier function and recovery, and perturbs TJs. Furthermore, ClC-2 expression is markedly reduced in the colon of human patients with ulcerative colitis.
BioMed Research International | 2014
Sonam Vijay; Manmeet Rawat; Arun Sharma
Salivary gland proteins of Anopheles mosquitoes offer attractive targets to understand interactions with sporozoites, blood feeding behavior, homeostasis, and immunological evaluation of malaria vectors and parasite interactions. To date limited studies have been carried out to elucidate salivary proteins of An. stephensi salivary glands. The aim of the present study was to provide detailed analytical attributives of functional salivary gland proteins of urban malaria vector An. stephensi. A proteomic approach combining one-dimensional electrophoresis (1DE), ion trap liquid chromatography mass spectrometry (LC/MS/MS), and computational bioinformatic analysis was adopted to provide the first direct insight into identification and functional characterization of known salivary proteins and novel salivary proteins of An. stephensi. Computational studies by online servers, namely, MASCOT and OMSSA algorithms, identified a total of 36 known salivary proteins and 123 novel proteins analysed by LC/MS/MS. This first report describes a baseline proteomic catalogue of 159 salivary proteins belonging to various categories of signal transduction, regulation of blood coagulation cascade, and various immune and energy pathways of An. stephensi sialotranscriptome by mass spectrometry. Our results may serve as basis to provide a putative functional role of proteins in concept of blood feeding, biting behavior, and other aspects of vector-parasite host interactions for parasite development in anopheline mosquitoes.
Journal of Pediatric Surgery | 2016
Sarah A. Moore; Prashant K. Nighot; Cynthia Reyes; Manmeet Rawat; Jason McKee; David Lemon; Joshua A. Hanson; Thomas Y. Ma
BACKGROUND Intestinal barrier dysfunction has been implicated in necrotizing enterocolitis (NEC), but has not been directly measured in human NEC. METHODS Small intestines removed during surgery were immediately mounted in an Ussing chamber. mRNA expression of tight junction (TJ) proteins was measured with RT-PCR. RESULTS Fifteen infants were included, 5 with NEC and 10 with other diagnoses. Average transepithelial resistance (TER) was 11.61±1.65Ω/cm2 in NEC specimens, 23.36±1.48Ω/cm2 at resection margin, and 46.48±5.65Ω/cm2 in controls. Average flux of permeability marker mannitol was 0.23±0.06μMol/cm2 per h in NEC, 0.04±0.01 μMol/cm2 per h at resection margin, and 0.017±0.004 μMol/cm2 per h in control tissue (p<0.05). RT-PCR analysis showed marked decrease in mRNA expression of a TJ protein occludin in NEC affected tissue (p<0.03 vs. control). Additionally, mRNA expression of myosin light chain kinase (MLCK), an important regulator of TJ permeability, was increased in NEC specimens. CONCLUSION These studies show for the first time that NEC intestinal tissue have increased intestinal permeability, even at grossly healthy-appearing resection areas. The increase in intestinal permeability in NEC appeared to be related in part to a decrease in occludin and an increase in MLCK expression. LEVEL OF EVIDENCE Level 2.
PLOS ONE | 2015
Anil Kumar Singh; Sumit Rathore; Yan Tang; Nathan E. Goldfarb; Ben M. Dunn; Vinoth Rajendran; Prahlad C. Ghosh; Neelu Singh; N. Latha; Brajendra K. Singh; Manmeet Rawat; Brijesh Rathi
A novel class of phthalimides functionalized with privileged scaffolds was designed, synthesized and evaluated as potential inhibitors of plasmepsin 2 (Ki: 0.99 ± 0.1 μM for 6u) and plasmepsin 4 (Ki: 3.3 ± 0.3 μM for 6t), enzymes found in the digestive vacuole of the plasmodium parasite and considered as crucial drug targets. Three compounds were identified as potential candidates for further development. The listed compounds were also assayed for their antimalarial efficacy against chloroquine (CQ) sensitive strain (3D7) of Plasmodium falciparum. Assay of twenty seven hydroxyethylamine derivatives revealed four (5e, 6j, 6o and 6s) as strongly active, which were further evaluated against CQ resistant strain (7GB) of P. falciparum. Compound 5e possessing the piperidinopiperidine moiety exhibited promising antimalarial activity with an IC50 of 1.16 ± 0.04 μM. Further, compounds 5e, 6j, 6o and 6s exhibited low cytotoxic effect on MCF-7 cell line. Compound 6s possessing C 2 symmetry was identified as the least cytotoxic with significant antimalarial activity (IC50: 1.30 ± 0.03 μM). The combined presence of hydroxyethylamine and cyclic amines (piperazines and piperidines) was observed as crucial for the activity. The current studies suggest that hydroxyethylamine based molecules act as potent antimalarial agent and may be helpful in drug development.
PLOS ONE | 2013
Manmeet Rawat; Sonam Vijay; Yash Gupta; Pramod Kumar Tiwari; Arun Sharma
Introduction Plasmepsin V (PM-V) have functionally conserved orthologues across the Plasmodium genus whos binding and antigenic processing at the PEXEL motifs for export about 200–300 essential proteins is important for the virulence and viability of the causative Plasmodium species. This study was undertaken to determine P. vivax plasmepsin V Ind (PvPM-V-Ind) PEXEL motif export pathway for pathogenicity-related proteins/antigens export thereby altering plasmodium exportome during erythrocytic stages. Method We identify and characterize Plasmodium vivax plasmepsin-V-Ind (mutant) gene by cloning, sequence analysis, in silico bioinformatic protocols and structural modeling predictions based on docking studies on binding capacity with PEXEL motifs processing in terms of binding and accessibility of export proteins. Results Cloning and sequence analysis for genetic diversity demonstrates PvPM-V-Ind (mutant) gene is highly conserved among all isolates from different geographical regions of India. Imperfect duplicate insertion types of mutations (SVSE from 246–249 AA and SLSE from 266–269 AA) were identified among all Indian isolates in comparison to P.vivax Sal-1 (PvPM-V-Sal 1) isolate. In silico bioinformatics interaction studies of PEXEL peptide and active enzyme reveal that PvPM-V-Ind (mutant) is only active in endoplasmic reticulum lumen and membrane embedding is essential for activation of plasmepsin V. Structural modeling predictions based on docking studies with PEXEL motif show significant variation in substrate protein binding of these imperfect mutations with data mined PEXEL sequences. The predicted variation in the docking score and interacting amino acids of PvPM-V-Ind (mutant) proteins with PEXEL and lopinavir suggests a modulation in the activity of PvPM-V in terms of binding and accessibility at these sites. Conclusion/Significance Our functional modeled validation of PvPM-V-Ind (mutant) imperfect duplicate insertions with data mined PEXEL sequences leading to altered binding and substrate accessibility of the enzyme makes it a plausible target to investigate export mechanisms for in silico virtual screening and novel pharmacophore designing.
Medicinal Research Reviews | 2018
Poonam; Yash Gupta; Nikesh Gupta; Snigdha Singh; Lidong Wu; Bhupender S. Chhikara; Manmeet Rawat; Brijesh Rathi
Over time, several exciting advances have been made in the treatment and prevention of malaria; however, this devastating disease continues to be a major global health problem and affects millions of people every year. Notably, the paucity of new efficient drug molecules and the inevitable drug resistance of the malaria parasite, Plasmodium falciparum, against frontline therapeutics are the foremost struggles facing malaria eradication initiatives. According to the malaria eradication agenda, the discovery of new chemical entities that can destroy the parasite at the liver stage, the asexual blood stage, the gametocyte stage, and the insect ookinete stage of the parasite life cycle (i.e., compounds exhibiting multistage activity) are in high demand, preferably with novel and multiple modes of action. Phenotypic screening of chemical libraries against the malaria parasite is certainly a crucial step toward overcoming these crises. In the last few years, various research groups, including industrial research laboratories, have performed large‐scale phenotypic screenings that have identified a wealth of chemical entities active against multiple life stages of the malaria parasite. Vital scientific and technological developments have led to the discovery of multistage inhibitors of the malaria parasite; these compounds, considered highly valuable starting points for subsequent drug discovery and eradication of malaria, are reviewed.
Scientific Reports | 2017
Prashant Kumar; Angela O. Achieng; Vinoth Rajendran; Prahlad C. Ghosh; Brajendra K. Singh; Manmeet Rawat; Douglas J. Perkins; Prakasha Kempaiah; Brijesh Rathi
A series of phthalimide analogues, novelized with high-valued bioactive scaffolds was synthesized by means of click-chemistry under non-conventional microwave heating and evaluated as noteworthy growth inhibitors of Plasmodium falciparum (3D7 and W2) in culture. Analogues 6a, 6h and 6 u showed highest activity to inhibit the growth of the parasite with IC50 values in submicromolar range. Structure-activity correlation indicated the necessity of unsubstituted triazoles and leucine linker to obtain maximal growth inhibition of the parasite. Notably, phthalimide 6a and 6u selectively inhibited the ring-stage growth and parasite maturation. On other hand, phthalimide 6h displayed selective schizonticidal activity. Besides, they displayed synergistic interactions with chloroquine and dihydroartemisinin against parasite. Additional in vivo experiments using P. berghei infected mice showed that administration of 6h and 6u alone, as well as in combination with dihydroartemisinin, substantially reduced the parasite load. The high antimalarial activity of 6h and 6u, coupled with low toxicity advocate their potential role as novel antimalarial agents, either as standalone or combination therapies.
Current Topics in Medicinal Chemistry | 2017
Kavita Kadian; Yash Gupta; Prakasha Kempaiah; Nikesh Gupta; Arun Sharma; Manmeet Rawat
INTRODUCTION The family of calcium-dependent protein kinases (CDPKs) carries a kinase domain fused to a calmodulin-like domain. The presence of protein kinases devoid of clear mammalian eukaryotic protein kinase orthologues makes them potential targets for therapeutic development. Recent studies on CDPKs have inspired an important primary regulator of calcium (intracellular Ca2+ signaling), which is extensively reported to play a critical role in various stages of the apicomplexan life cycle such as microneme secretion of adhesions, cell invasion, gamete maturation, gliding motility and egress of Plasmodium Spp. CONCLUSION Understanding and identifying these essential cytoregulatory components of the parasite is important for drug targets development and therapeutic intervention.
Current Topics in Medicinal Chemistry | 2017
Angela O. Achieng; Manmeet Rawat; Bernhards Ogutu; Bernard Guyah; John M. Ong'echa; Douglas J. Perkins; Prakasha Kempaiah
BACKGROUND Despite a reduction in the global burden of malaria, the disease remains responsible for 214 million cases and 438,000 deaths annually with 88% of the mortality occurring in sub-Saharan Africa. Malaria control largely depends on effective chemotherapy. However, the historic and current emergence and spread of multi-drug resistant parasite strains provides significant challenges to malaria control and consequently, reduction of malaria-associated morbidity and mortality. Combating parasite drug resistance requires pharmacological compounds that target both known and novel metabolic pathways that are crucial for parasite survival. In addition, the identification of novel therapeutic agents that target distinct molecular pathways, apart from those of the conventional antimalarials, offers an approach for minimizing drug resistance. CONCLUSION This review summarizes current anti-malarial approaches and strategies, therapeutic efficacy for conventional and non-conventional antimalarials, parasitic targets, and the mechanisms responsible for the development of drug resistance.