Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mannan Boopathi is active.

Publication


Featured researches published by Mannan Boopathi.


Biosensors and Bioelectronics | 2011

Supersensitive detection of T-2 toxin by the in situ synthesized π-conjugated molecularly imprinted nanopatterns. An in situ investigation by surface plasmon resonance combined with electrochemistry.

Garima Gupta; A.S.B. Bhaskar; Brajesh K. Tripathi; Pratibha Pandey; Mannan Boopathi; P.V. Lakshmana Rao; Beer Singh; R. Vijayaraghavan

A π-conjugated molecularly imprinted polymer (MIP) with nanopatterns for T-2 toxin (T-2) was prepared on SPR chip by in situ electropolymerization of 3-aminophenylboronicacid (3-APBA) with T-2. The complete removal of T-2 from polymer was confirmed in situ by SPR and EIS and also ex situ by SEM, EDAX, fluorescence microscopy and Raman spectroscopy. SEM image of T-2 MIP exhibited nanopatterns due to imprinting of T-2. The MIP of T-2 showed a linear response for T-2 from 2.1 fM to 33.6 fM with a detection limit of 0.1 fM (0.05 pg/mL). In this study, thermodynamic parameters such as change in Gibbs free energy (ΔG), change in enthalpy (ΔH) and change in entropy (ΔS) were determined and the values revealed that the interaction between T-2 and T-2 MIP as spontaneous, endothermic and entropy driven one. Moreover, interactions of very high concentration of interferents with T-2 MIP showed very less response due to the presence of nanopatterns of T-2 in the T-2 MIP. Equilibrium constant (12.7 fM) obtained in this study indicates the super binding affinity of T-2 with T-2 MIP. Moreover, the present methodology provides an outline to develop field-detection equipment capable of detecting T-2 toxin at or well below the guideline concentrations recommended by American subcommittee on military field drinking water.


International journal of electrochemistry | 2012

Applications of Ionic Liquids in Electrochemical Sensors and Biosensors

Virendra Singh; Anil K. Nigam; Anirudh Batra; Mannan Boopathi; Beer Singh; R. Vijayaraghavan

Ionic liquids (ILs) are salt that exist in the liquid phase at and around 298 K and are comprised of a bulky, asymmetric organic cation and the anion usually inorganic ion but some ILs also with organic anion. ILs have attracted much attention as a replacement for traditional organic solvents as they possess many attractive properties. Among these properties, intrinsic ion conductivity, low volatility, high chemical and thermal stability, low combustibility, and wide electrochemical windows are few. Due to negligible or nonzero volatility of these solvents, they are considered “greener” for the environment as they do not evaporate like volatile organic compounds (VOCs). ILs have been widely used in electrodeposition, electrosynthesis, electrocatalysis, electrochemical capacitor, lubricants, plasticizers, solvent, lithium batteries, solvents to manufacture nanomaterials, extraction, gas absorption agents, and so forth. Besides a brief discussion of the introduction, history, and properties of ILs the major purpose of this review paper is to provide an overview on the advantages of ILs for the synthesis of conducting polymer and nanoparticle when compared to conventional media and also to focus on the electrochemical sensors and biosensors based on IL/composite modified macrodisk electrodes. Subsequently, recent developments and major strategies for enhancing sensing performance are discussed.


Biosensors and Bioelectronics | 2009

Molecularly imprinted nanopatterns for the recognition of biological warfare agent ricin

Santwana Pradhan; Mannan Boopathi; Om Kumar; Anuradha Baghel; Pratibha Pandey; T.H. Mahato; Beer Singh; R. Vijayaraghavan

Molecularly imprinted polymer (MIP) for biological warfare agent (BWA) ricin was synthesized using silanes in order to avoid harsh environments during the synthesis of MIP. The synthesized MIP was utilized for the recognition of ricin. The complete removal of ricin from polymer was confirmed by fluorescence spectrometer and SEM-EDAX. SEM and EDAX studies confirmed the attachment of silane polymer on the surface of silica gel matrix. SEM image of Ricin-MIP exhibited nanopatterns and it was found to be entirely different from the SEM image of non-imprinted polymer (NIP). BET surface area analysis revealed more surface area (227 m(2)/g) for Ricin-MIP than that of NIP (143 m(2)/g). In addition, surface area study also showed more pore volume (0.5010 cm(3)/g) for Ricin-MIP than that of NIP (0.2828 cm(3)/g) at 12 nm pore diameter confirming the presence of imprinted sites for ricin as the reported diameter of ricin is 12 nm. The recognition and rebinding ability of the Ricin-MIP was tested in aqueous solution. Ricin-MIP rebound more ricin when compared to the NIP. Chromatogram obtained with Ricin-MIP exhibited two peaks due to imprinting, however, chromatogram of NIP exhibited only one peak for free ricin. SDS-PAGE result confirmed the second peak observed in chromatogram of Ricin-MIP as ricin peak. Ricin-MIP exhibited an imprinting efficiency of 1.76 and it also showed 10% interference from the structurally similar protein abrin.


Biosensors and Bioelectronics | 2012

Surface plasmon resonance immunosensor for the detection of Salmonella typhi antibodies in buffer and patient serum

Garima Gupta; Pushpendra K. Sharma; Bhavna Sikarwar; S. Merwyn; S. Kaushik; Mannan Boopathi; Gauri S. Agarwal; Beer Singh

Surface plasmon resonance (SPR) immunosensor using 4-mercaptobenzoic acid (4-MBA) modified gold SPR chip was developed first time for the detection of flagellin specific antibodies of Salmonella typhi (S. typhi). Flagellin protein of S. typhi was prepared by recombinant DNA technology. The modification of gold chip with 4-MBA was in-situ characterized by SPR and electrochemical impedance spectroscopy. By using kinetic evaluation software, K(D) and B(max) values were calculated and found to be 26.3 fM and 62.04 m°, respectively, for the immobilized monoclonal antibody (Moab) of recombinant flagellin (r-fla) protein of S. typhi (r-fla S. typhi). In addition, thermodynamic parameters such as ΔG, ΔH and ΔS were determined first time for r-fla S. typhi and Moab of r-fla S. typhi interactions and the values revealed the interaction between r-fla S. typhi and Moab of r-fla S. typhi as spontaneous, endothermic and entropy driven one. Moreover, healthy human serum samples and patient sera (Widal positive and Widal negative) were subjected to SPR analysis. The present SPR based approach provides an alternative way for S. typhi detection in less than 10 min.


Biosensors and Bioelectronics | 2014

Surface plasmon resonance characterization of monoclonal and polyclonal antibodies of malaria for biosensor applications

Bhavna Sikarwar; Pushpendra K. Sharma; A.R. Srivastava; Gauri S. Agarwal; Mannan Boopathi; Beer Singh; Yogesh K. Jaiswal

Surface plasmon resonance (SPR) screening of monoclonal and polyclonal antibodies of Plasmodium falciparum (MoabPf and PoabPf) for recombinant Histidine rich protein-II antigen (Ag) of Pf (rHRP-II Ag) was conducted in a real-time and label-free manner to select an appropriate antibody (Ab) for biosensor applications. In this study 4-mercaptobenzoic acid (4-MBA) modified gold SPR chip was used for immobilizing the Ag and then Ab was interacted. SEM image showed modification of SPR chip with 4-MBA and EDAX confirmed the presence of 4-MBA on the SPR chip. Equilibrium constant (KD) and maximum binding capacity of analyte (Bmax) values for the interaction of MoabPf or PoabPf with the immobilized rHRP-II Ag were calculated and found to be 0.517 nM and 48.61 m° for MoabPf and 2.288 nM and 46.80 m° for PoabPf, respectively. In addition, thermodynamic parameters such as ΔG, ΔH and ΔS were determined for the interaction between rHRP-II Ag and MoabPf or PoabPf and the values revealed that the interaction is spontaneous, exothermic and driven by entropy. The kinetics and thermodymanic results of this study revealed that the interaction between MoabPf and rHRP-II Ag is more effective than that of PoabPf due to the fact that MoabPf was derived from a single epitope (single clone) whereas the PoabPf was from the mixture of a number of epitopes (polyclones). Finally, SPR methodology was developed for the sensing of malarial antibodies. The limit of detection was found to be 5.6 pg with MoabPf which was found to be the best in our study.


Diagnostic Microbiology and Infectious Disease | 2013

Detection of protective antigen, an anthrax specific toxin in human serum by using surface plasmon resonance

Neha Ghosh; Nidhi Gupta; Garima Gupta; Mannan Boopathi; Vijay Pal; Ajay Kumar Goel

In this study, surface plasmon resonance (SPR) technology was used for the sensitive detection of protective antigen (PA), an anthrax specific toxin in spiked human serum samples. A monoclonal antibody raised against Bacillus anthracis PA was immobilized on carboxymethyldextran-modified gold chip, and its interaction with PA was characterized in situ by SPR. By using kinetic evaluation software, KD (equilibrium constant) and Bmax (maximum binding capacity of analyte) were found to be 20 fM and 18.74 m°, respectively. The change in Gibbs free energy (∆G= -78.04 kJ/mol) confirmed the spontaneous interaction between antigen and antibody. The assay could detect 1 pg/mL purified PA. In PA-spiked human serum samples, 10 pg/mL of PA could be detected. Presence of PA in blood samples serves as an important early diagnostic marker for B. anthracis infections. Thus, SPR test can be a sensitive assay for detection of anthrax at early stages of infection.


Biosensors and Bioelectronics | 2017

DNA-probe-target interaction based detection of Brucella melitensis by using surface plasmon resonance

Bhavna Sikarwar; Virendra V. Singh; Pushpendra K. Sharma; Ashu Kumar; Duraipandian Thavaselvam; Mannan Boopathi; Beer Singh; Yogesh K. Jaiswal

Surface plasmon resonance (SPR) immunosensor using 4-mercaptobenzoic acid (4-MBA) modified gold (4-MBA/Au) SPR chip was developed first time for the detection of Brucella melitensis (B. melitensis) based on the screening of its complementary DNA target by using two different newly designed DNA probes of IS711 gene. Herein, interaction between DNA probes and target molecule are also investigated and result revealed that the interaction is spontaneous. The kinetics and thermodynamic results derived from the experimental data showed that the interaction between complementary DNA targets and probe 1 is more effective than that of probe 2. Equilibrium dissociation constant (KD) and maximum binding capacity of analyte (Bmax) values for the interaction of complementary DNA target with the immobilized DNA probes were calculated by using kinetic evaluation software, and found to be 15.3 pM (KD) and 81.02m° (Bmax) with probe 1 and 54.9pM and 55.29m° (Bmax), respectively. Moreover, real serum samples analysis were also carried out using immobilized probe 1 and probe 2 with SPR which showed the applicability of this methodology and provides an alternative way for the detection of B. melitensis in less than 10min. This remarkable sensing response of present methodology offer a real time and label free detection of biological warfare agent and provide an opportunity to make miniaturized sensor, indicating considerable promise for diverse environmental, bio-defence, clinical diagnostics, food safety, water and security applications.


Journal of Medical Virology | 2014

Characterization of pandemic influenza A (H1N1) virus hemagglutinin specific polyclonal antibodies for biosensor applications.

T. N. Athmaram; Shweta Saraswat; Bhavna Sikarwar; Shailendra Kumar Verma; Anil Kumar Singh; Mannan Boopathi

In this study, recombinant hemagglutinin protein (rH1N1HA) of Pandemic influenza virus and polyclonal antibodies against it for biosensor applications have been characterized. For rapid and high sensitive detection of H1N1 virus or its antibodies, PCR‐free and label free detection method based on a surface plasmon resonance technique has been proposed. The glycosylated H1N1HA protein was expressed in yeast and the authenticity of the expressed protein was confirmed by Western blotting. Rabbit polyclonal antibodies developed against rH1N1HA protein were evaluated for their ability to neutralize H1N1 virus through plaque reduction neutralization test and indirect ELISA. Affinity purified anti‐H1N1HA IgG were characterized further for their specificity, affinity of interaction, the association and dissociation rates at which they interact through surface plasmon resonance technique. The equilibrium constant and maximum binding capacity of analyte was found to be 49.7 nM and 47.28m°, respectively. The assay could detect a lowest IgG of 0.5 ng on a rH1N1HA coated chip. Combined with the high sensitivity of surface plasmon resonance technique and specificity of the reagents, it is possible to develop a rapid detection assay for monitoring influenza infections. J. Med. Virol. 86:363–371, 2014.


Protein and Peptide Letters | 2012

Deletion Mutant Comprising 198 Residues of BoNT/A Toxin Receptor Binding Domain Retained GT1b Binding Property but Failed to Induce Protective Antibody Response in a Mouse Model

Manglesh Kumar Singh; Garima Gupta; Mannan Boopathi; Pallavi Gupta; Vinita Chauhan; Arvind Tomar; Lokendra Singh; Ram Kumar Dhaked

The most effective protection against toxin is inducing protective immune response through vaccination that will produce neutralizing antibodies. Antibodies will bind to and clear toxin from the circulation before it can enter nerve cells and block neurotransmission and can also be used for development of detection system. In the present study we constructed a deletion mutant of the binding domain (1098-1296) to produce smallest toxin fragment as vaccine candidate against BoNT/A. The BoNT/A-HCC protein was highly expressed in Escherichia coli SG13009 and found to form inclusion bodies. The purified inclusion bodies were solubilized in 6 M guanidine-HCl containing 10 mM β-mercaptoethanol and 20 mM imidazole and the rBoNT/A-HCC was purified and refolded in a single step on Ni2+ affinity column. The purified protein was ∼98 % pure as assessed by SDS-polyacrylamide gel with the yield of 8 mg/L and showed binding to polysialoganglioside (GT1b). The rBoNT/A-HCC at dose of 40 μg/mouse generated high IgG antibody titre with predominance of IgG1 subtype, but failed to protect animals against BoNT/A challenge. Antibody titre in serum was determined by enzyme linked immunosorbent assay and specific binding to rBoNT/A-HCC was demonstrated by surface plasmon resonance (SPR), with a dissociation constant of 0.8 pM.


Advanced Functional Materials | 2012

Greener Electrochemical Synthesis of High Quality Graphene Nanosheets Directly from Pencil and its SPR Sensing Application

Virendra V. Singh; Garima Gupta; Anirudh Batra; Anil K. Nigam; Mannan Boopathi; P. K. Gutch; Brajesh K. Tripathi; A.R. Srivastava; Merwyn Samuel; Gauri S. Agarwal; Beer Singh; R. Vijayaraghavan

Collaboration


Dive into the Mannan Boopathi's collaboration.

Top Co-Authors

Avatar

Beer Singh

Defence Research and Development Establishment

View shared research outputs
Top Co-Authors

Avatar

Garima Gupta

Defence Research and Development Establishment

View shared research outputs
Top Co-Authors

Avatar

R. Vijayaraghavan

Defence Research and Development Establishment

View shared research outputs
Top Co-Authors

Avatar

Virendra V. Singh

Defence Research and Development Establishment

View shared research outputs
Top Co-Authors

Avatar

Pratibha Pandey

Defence Research and Development Establishment

View shared research outputs
Top Co-Authors

Avatar

Bhavna Sikarwar

Defence Research and Development Establishment

View shared research outputs
Top Co-Authors

Avatar

Pushpendra K. Sharma

Defence Research and Development Establishment

View shared research outputs
Top Co-Authors

Avatar

Anil K. Nigam

Defence Research and Development Establishment

View shared research outputs
Top Co-Authors

Avatar

Kumaran Ganesan

Defence Research and Development Establishment

View shared research outputs
Top Co-Authors

Avatar

Brajesh K. Tripathi

Defence Research and Development Establishment

View shared research outputs
Researchain Logo
Decentralizing Knowledge