Manoj Fonville
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manoj Fonville.
Applied and Environmental Microbiology | 2006
Peter R. Wielinga; C.P.H. Gaasenbeek; Manoj Fonville; Albert de Boer; Ankje de Vries; Wim Dimmers; Gerard Akkerhuis Op Jagers; Leo M. Schouls; Fred H.M. Borgsteede; Joke van der Giessen
ABSTRACT From 2000 to 2004, ticks were collected by dragging a blanket in four habitat areas in The Netherlands: dunes, heather, forest, and a city park. Tick densities were calculated, and infection with Borrelia burgdorferi and Anaplasma and Ehrlichia species was investigated by reverse line blot analysis. The lowest tick density was observed in the heather area (1 to 8/100 m2). In the oak forest and city park, the tick densities ranged from 26 to 45/100 m2. The highest tick density was found in the dune area (139 to 551/100 m2). The infection rates varied significantly for the four study areas and years, ranging from 0.8 to 11. 5% for Borrelia spp. and 1 to 16% for Ehrlichia or Anaplasma (Ehrlichia/Anaplasma) spp. Borrelia infection rates were highest in the dunes, followed by the forest, the city park, and heather area. In contrast, Ehrlichia/Anaplasma was found most often in the forest and less often in the city park. The following Borrelia species were found: Borrelia sensu lato strains not identified to the species level (2.5%), B. afzelii (2.5%), B. valaisiana (0.9%), B. burgdorferi sensu stricto (0.13%), and B. garinii (0.13%). For Ehrlichia/Anaplasma species, Ehrlichia and Anaplasma spp. not identified to the species level (2.5%), Anaplasma schotti variant (3.5%), Anaplasma phagocytophilum variant (0.3%), and Ehrlichia canis (0.19%) were found. E. canis is reported for the first time in ticks in The Netherlands in this study. Borrelia lusitaniae, Ehrlichia chaffeensis, and the human granylocytic anaplasmosis agent were not detected. About 1.6% of the ticks were infected with both Borrelia and Ehrlichia/Anaplasma, which was higher than the frequency predicted from the individual infection rates, suggesting hosts with multiple infections or a possible selective advantage of coinfection.
Parasites & Vectors | 2009
Hein Sprong; Peter R. Wielinga; Manoj Fonville; Chantal Reusken; Afke H. Brandenburg; Fred H.M. Borgsteede; C.P.H. Gaasenbeek; Joke van der Giessen
BackgroundHard ticks have been identified as important vectors of rickettsiae causing the spotted fever syndrome. Tick-borne rickettsiae are considered to be emerging, but only limited data are available about their presence in Western Europe, their natural life cycle and their reservoir hosts. Ixodes ricinus, the most prevalent tick species, were collected and tested from different vegetation types and from potential reservoir hosts. In one biotope area, the annual and seasonal variability of rickettsiae infections of the different tick stages were determined for 9 years.ResultsThe DNA of the human pathogen R. conorii as well as R. helvetica, R. sp. IRS and R. bellii-like were found. Unexpectedly, the DNA of the highly pathogenic R. typhi and R. prowazekii and 4 other uncharacterized Rickettsia spp. related to the typhus group were also detected in I. ricinus. The presence of R. helvetica in fleas isolated from small rodents supported our hypothesis that cross-infection can occur under natural conditions, since R. typhi/prowazekii and R. helvetica as well as their vectors share rodents as reservoir hosts. In one biotope, the infection rate with R. helvetica was ~66% for 9 years, and was comparable between larvae, nymphs, and adults. Larvae caught by flagging generally have not yet taken a blood meal from a vertebrate host. The simplest explanation for the comparable prevalence of R. helvetica between the defined tick stages is, that R. helvetica is vertically transmitted through the next generation with high efficiency. The DNA of R. helvetica was also present in whole blood from mice, deer and wild boar.ConclusionBesides R. helvetica, unexpected rickettsiae are found in I. ricinus ticks. We propose that I. ricinus is a major reservoir host for R. helvetica, and that vertebrate hosts play important roles in the further geographical dispersion of rickettsiae.
Parasites & Vectors | 2012
Setareh Jahfari; Manoj Fonville; Paul Hengeveld; Chantal Reusken; Willem Takken; Paul Heyman; Jolyon M. Medlock; Dieter Heylen; Jenny Kleve; Hein Sprong
BackgroundNeoehrlichia mikurensis s an emerging and vector-borne zoonosis: The first human disease cases were reported in 2010. Limited information is available about the prevalence and distribution of Neoehrlichia mikurensis in Europe, its natural life cycle and reservoir hosts. An Ehrlichia-like schotti variant has been described in questing Ixodes ricinus ticks, which could be identical to Neoehrlichia mikurensis.MethodsThree genetic markers, 16S rDNA, gltA and GroEL, of Ehrlichia schotti-positive tick lysates were amplified, sequenced and compared to sequences from Neoehrlichia mikurensis. Based on these DNA sequences, a multiplex real-time PCR was developed to specifically detect Neoehrlichia mikurensis in combination with Anaplasma phagocytophilum in tick lysates. Various tick species from different life-stages, particularly Ixodes ricinus nymphs, were collected from the vegetation or wildlife. Tick lysates and DNA derived from organs of wild rodents were tested by PCR-based methods for the presence of Neoehrlichia mikurensis. Prevalence of Neoehrlichia mikurensis was calculated together with confidence intervals using Fishers exact test.ResultsThe three genetic markers of Ehrlichia schotti-positive field isolates were similar or identical to Neoehrlichia mikurensis. Neoehrlichia mikurensis was found to be ubiquitously spread in the Netherlands and Belgium, but was not detected in the 401 tick samples from the UK. Neoehrlichia mikurensis was found in nymphs and adult Ixodes ricinus ticks, but neither in their larvae, nor in any other tick species tested. Neoehrlichia mikurensis was detected in diverse organs of some rodent species. Engorging ticks from red deer, European mouflon, wild boar and sheep were found positive for Neoehrlichia mikurensis.ConclusionsEhrlichia schotti is similar, if not identical, to Neoehrlichia mikurensis. Neoehrlichia mikurensis is present in questing Ixodes ricinus ticks throughout the Netherlands and Belgium. We propose that Ixodes ricinus can transstadially, but not transovarially, transmit this microorganism, and that different rodent species may act as reservoir hosts. These data further imply that wildlife and humans are frequently exposed to Neoehrlichia mikurensis- infected ticks through tick bites. Future studies should aim to investigate to what extent Neoehrlichia mikurensis poses a risk to public health.
Parasites & Vectors | 2014
Setareh Jahfari; E. Claudia Coipan; Manoj Fonville; Arieke Docters van Leeuwen; Paul Hengeveld; Dieter Heylen; Paul Heyman; Cees van Maanen; Catherine M Butler; Gábor Földvári; Sándor Szekeres; Gilian van Duijvendijk; Wesley Tack; Jolianne M. Rijks; Joke van der Giessen; Willem Takken; Sipke E. van Wieren; Katsuhisa Takumi; Hein Sprong
BackgroundAnaplasma phagocytophilum is the etiological agent of granulocytic anaplasmosis in humans and animals. Wild animals and ticks play key roles in the enzootic cycles of the pathogen. Potential ecotypes of A. phagocytophilum have been characterized genetically, but their host range, zoonotic potential and transmission dynamics has only incompletely been resolved.MethodsThe presence of A. phagocytophilum DNA was determined in more than 6000 ixodid ticks collected from the vegetation and wildlife, in 289 tissue samples from wild and domestic animals, and 69 keds collected from deer, originating from various geographic locations in The Netherlands and Belgium. From the qPCR-positive lysates, a fragment of the groEL-gene was amplified and sequenced. Additional groEL sequences from ticks and animals from Europe were obtained from GenBank, and sequences from human cases were obtained through literature searches. Statistical analyses were performed to identify A. phagocytophilum ecotypes, to assess their host range and their zoonotic potential. The population dynamics of A. phagocytophilum ecotypes was investigated using population genetic analyses.ResultsDNA of A. phagocytophilum was present in all stages of questing and feeding Ixodes ricinus, feeding I. hexagonus, I. frontalis, I. trianguliceps, and deer keds, but was absent in questing I. arboricola and Dermacentor reticulatus. DNA of A. phagocytophilum was present in feeding ticks and tissues from many vertebrates, including roe deer, mouflon, red foxes, wild boar, sheep and hedgehogs but was rarely found in rodents and birds and was absent in badgers and lizards. Four geographically dispersed A. phagocytophilum ecotypes were identified, that had significantly different host ranges. All sequences from human cases belonged to only one of these ecotypes. Based on population genetic parameters, the potentially zoonotic ecotype showed significant expansion.ConclusionFour ecotypes of A. phagocytophilum with differential enzootic cycles were identified. So far, all human cases clustered in only one of these ecotypes. The zoonotic ecotype has the broadest range of wildlife hosts. The expansion of the zoonotic A. phagocytophilum ecotype indicates a recent increase of the acarological risk of exposure of humans and animals.
Environmental Microbiology | 2013
Dieter Heylen; Ellen Tijsse; Manoj Fonville; Erik Matthysen; Hein Sprong
We examined the Borrelia burgdorferi sensu lato circulation in a tick community consisting of three species (Ixodes ricinus, I. frontalis, I. arboricola) with contrasting ecologies, but sharing two European songbird hosts (Parus major and Cyanistes caeruleus). Parus major had the highest infestation rates, primarily due to larger numbers of I. ricinus, and probably because of their greater low-level foraging. The prevalence of Borrelia in feeding ticks did not significantly differ between the two bird species; however, P. major in particular hosted large numbers of Borrelia-infected I. frontalis and I. ricinus larvae, suggesting that the species facilitates Borrelia transmission. The low but significant numbers of Borrelia in questing I. arboricola ticks also provides the first field data to suggest that it is competent in maintaining Borrelia. Aside from Borrelia garinii, a high number of less dominant genospecies was observed, including several mammalian genospecies and the first record of Borrelia turdi for North-Western Europe. Borrelia burgdorferi sensu lato IGS genotypes were shared between I. arboricola and I. ricinus and between I. frontalis and I. ricinus, but not between I. arboricola and I. frontalis. This suggests that the Borrelia spp. transmission cycles can be maintained by bird-specific ticks, and bridged by I. ricinus to other hosts outside bird-tick cycles.
Zoonoses and Public Health | 2012
Hein Sprong; Ellen Tijsse-Klasen; M. Langelaar; A. de Bruin; Manoj Fonville; F. Gassner; Willem Takken; S.E. van Wieren; Ard M. Nijhof; Frans Jongejan; C.B.M. Maassen; J.W. Hovius; K. Emil Hovius; E. Spitalska; Y.T. van Duynhoven
Q fever has emerged as an important human and veterinary public health problem in the Netherlands with major outbreaks in three consecutive years. Goat farms are probably the prime source from which Coxiella burnetii have spread throughout the environment, infecting people living in the vicinity. Coxiella burnetii infection not only spilled over from animal husbandry to humans but could also have spread to neighbouring wildlife and pets forming novel reservoirs and consequently posing another and lingering threat to humans, companion animals and livestock. In these cases, transmission routes other than airborne spread of contaminated aerosols may become significant. Therefore, the role of ticks in the transmission of Coxiella burnetii in the current situation was investigated. A total of 1891 questing Ixodes ricinus ticks and 1086 ticks feeding on pets, wildlife and livestock were tested by a recently developed multiplex Q‐PCR. All ticks were negative, except for a few ticks feeding on a herd of recently vaccinated sheep. Coxiella‐positive ticks were not detected after resampling this particular herd three months later. Based on these data we conclude that the current risk of acquiring Q fever from questing ticks in the Netherlands is negligible. However, for future risk assessments, it might be relevant to sample more ticks in the vicinity of previously C. burnetii infected goat farms and to assess whether C. burnetii can be transmitted transovarially and transstadially in I. ricinus ticks.
Frontiers in Cellular and Infection Microbiology | 2013
Elena Claudia Coipan; Setareh Jahfari; Manoj Fonville; C.B.M. Maassen; Joke van der Giessen; Willem Takken; Katsuhisa Takumi; Hein Sprong
Ixodes ricinus transmits Borrelia burgdorferi sensu lato, the etiological agent of Lyme disease. Previous studies have also detected Rickettsia helvetica, Anaplasma phagocytophilum, Neoehrlichia mikurensis, and several Babesia species in questing ticks in The Netherlands. In this study, we assessed the acarological risk of exposure to several tick-borne pathogens (TBPs), in The Netherlands. Questing ticks were collected monthly between 2006 and 2010 at 21 sites and between 2000 and 2009 at one other site. Nymphs and adults were analysed individually for the presence of TBPs using an array-approach. Collated data of this and previous studies were used to generate, for each pathogen, a presence/absence map and to further analyse their spatiotemporal variation. R. helvetica (31.1%) and B. burgdorferi sensu lato (11.8%) had the highest overall prevalence and were detected in all areas. N. mikurensis (5.6%), A. phagocytophilum (0.8%), and Babesia spp. (1.7%) were detected in most, but not all areas. The prevalences of pathogens varied among the study areas from 0 to 64%, while the density of questing ticks varied from 1 to 179/100 m2. Overall, 37% of the ticks were infected with at least one pathogen and 6.3% with more than one pathogen. One-third of the Borrelia-positive ticks were infected with at least one other pathogen. Coinfection of B. afzelii with N. mikurensis and with Babesia spp. occurred significantly more often than single infections, indicating the existence of mutual reservoir hosts. Alternatively, coinfection of R. helvetica with either B. afzelii or N. mikurensis occurred significantly less frequent. The diversity of TBPs detected in I. ricinus in this study and the frequency of their coinfections with B. burgdorferi s.l., underline the need to consider them when evaluating the risks of infection and subsequently the risk of disease following a tick bite.
Parasites & Vectors | 2010
Ellen Tijsse-Klasen; Manoj Fonville; Johan Hj Reimerink; Annemarieke Spitzen van der Sluijs; Hein Sprong
BackgroundLizards are considered zooprophylactic for almost all Borrelia burgdorferi species, and act as dilution hosts in parts of North America. Whether European lizards significantly reduce the ability of B. burgdorferi to maintain itself in enzootic cycles, and consequently decrease the infection rate of Ixodes ricinus ticks for B. burgdorferi and other tick-borne pathogens in Western Europe is not clear.ResultsTicks were collected from sand lizards, their habitat (heath) and from the adjacent forest. DNA of tick-borne pathogens was detected by PCR followed by reverse line blotting. Tick densities were measured at all four locations by blanket dragging. Nymphs and adult ticks collected from lizards had a significantly lower (1.4%) prevalence of B. burgdorferi sensu lato, compared to questing ticks in heath (24%) or forest (19%). The prevalence of Rickettsia helvetica was significantly higher in ticks from lizards (19%) than those from woodland (10%) whereas neither was significantly different from the prevalence in ticks from heather (15%). The prevalence of Anaplasma and Ehrlichia spp in heather (12%) and forest (14%) were comparable, but significantly lower in ticks from sand lizards (5.4%). The prevalence of Babesia spp in ticks varied between 0 and 5.3%. Tick load of lizards ranged from 1 - 16. Tick densities were ~ 5-fold lower in the heather areas than in woodlands at all four sites.ConclusionsDespite their apparent low reservoir competence, the presence of sand lizards had insignificant impact on the B. burgdorferi s.l. infection rate of questing ticks. In contrast, sand lizards might act as reservoir hosts for R. helvetica. Remarkably, the public health risk from tick-borne diseases is approximately five times lower in heather than in woodland, due to the low tick densities in heather.
Vector-borne and Zoonotic Diseases | 2009
Peter R. Wielinga; Manoj Fonville; Hein Sprong; C.P.H. Gaasenbeek; Fred H.M. Borgsteede; Joke van der Giessen
We report the finding of Babesia EU1 and Babesia microti in Ixodes ricinus ticks in the Netherlands. During 5 years of surveillance between 2003 and 2007, 1488 ticks were collected in a dune forest area near the North Sea and were screened for Babesia infections. In 17 ticks, DNA of the protozoan parasite genus Babesia was detected using a Babesia-specific 18S rRNA polymerase chain reaction. Further, reverse line blot analysis and DNA sequence analysis showed that 13 of these ticks carried Babesia EU1, two ticks carried B. microti, and one tick carried B. divergens. This study shows that the human pathogenic species Babesia EU1 and B. microti can complete their life cycle in the Netherlands.
Epidemiology and Infection | 2015
Kayleigh M. Hansford; Manoj Fonville; Setareh Jahfari; Hein Sprong; Jolyon M. Medlock
This paper reports the first detection of Borrelia miyamotoi in UK Ixodes ricinus ticks. It also reports on the presence and infection rates of I. ricinus for a number of other tick-borne pathogens of public health importance. Ticks from seven regions in southern England were screened for B. miyamotoi, Borrelia burgdorferi sensu lato (s.l.), Anaplasma phagocytophilum and Neoehrlichia mikurensis using qPCR. A total of 954 I. ricinus ticks were tested, 40 were positive for B. burgdorferi s.l., 22 positive for A. phagocytophilum and three positive for B. miyamotoi, with no N. mikurensis detected. The three positive B. miyamotoi ticks came from three geographically distinct areas, suggesting a widespread distribution, and from two separate years, suggesting some degree of endemicity. Understanding the prevalence of Borrelia and other tick-borne pathogens in ticks is crucial for locating high-risk areas of disease transmission.