Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manoja K. Samantaray is active.

Publication


Featured researches published by Manoja K. Samantaray.


Inorganic Chemistry | 2008

From large 12-membered macrometallacycles to ionic (NHC)(2)M(+)Cl(-) type complexes of gold and silver by modulation of the N-substituent of amido-functionalized N-heterocyclic carbene (NHC) Ligands

Manoja K. Samantaray; Keliang Pang; Mobin M. Shaikh; Prasenjit Ghosh

A series of structurally diverse gold and silver complexes extending from ionic (NHC) 2M(+)Cl(-) (M=Au, Ag) type complexes to large 12-membered macrometallacycles have been prepared by the appropriate modification of the N-substituent of amido-functionalized N-heterocyclic carbenes. Specifically, the ionic, [1-(R)-3-{ N-(t-butylacetamido)imidazol-2-ylidene}]2M(+)Cl(-), (R=t-Bu, i-Pr; M=Au, Ag; 1b, 1c, 2b, 2c) complexes, were obtained in case of the N- t-butyl substituent of the amido-functionalized sidearm while 12-membered macrometallacycles, [1-(R)-3-{N-(2,6-di i-propylphenylacetamido)imidazol-2-ylidene}]2M2, (R=t-Bu, i-Pr; M=Au, Ag; 3b, 3c, 4b, 4c) were obtained in case of the 2,6-di i-propylphenyl N-substituent. These structurally diverse complexes of gold and silver were, however, prepared employing a common synthetic pathway involving the reactions of the imidazolium chloride salts (1a, 2a, 3a, 4a) with Ag2O to give the silver complexes (1b, 2b, 3b, 4b) and which, when treated with (SMe2)AuCl, gave the gold complexes (1c, 2c, 3c, 4c). Detailed density functional theory studies of 1b, 1c, 2b, 2c, 3b, 3c, 4b, and 4c were carried out to gain insight about the structure, bonding, and the electronic properties of these complexes. The NHC-metal interaction in the ionic 1b, 1c, 2b, and 2c complexes is primarily composed of the interaction of the carbene lone pair with the empty p orbital of the metal (5p for Ag and 6p for Au) while the same in the macrometallacyclic 3b, 3c, 4b, and 4c complexes consisted of the interaction of the carbene lone pair with the empty s orbital of the metal (5s for Ag and 6s for Au). The observation of a low energy emission in about the 580-650 nm region has been tentatively assigned to originate from the presence of weak metallophilic interaction in these macrometallacyclic 3b, 3c, 4b, and 4c complexes.


Journal of the American Chemical Society | 2014

WMe6 Tamed by Silica: ≡Si–O–WMe5 as an Efficient, Well-Defined Species for Alkane Metathesis, Leading to the Observation of a Supported W–Methyl/Methylidyne Species

Manoja K. Samantaray; Emmanuel Callens; Edy Abou-Hamad; Aaron J. Rossini; Cory M. Widdifield; Raju Dey; Lyndon Emsley; Jean-Marie Basset

The synthesis and full characterization of a well-defined silica-supported ≡Si-O-W(Me)5 species is reported. Under an inert atmosphere, it is a stable material at moderate temperature, whereas the homoleptic parent complex decomposes above -20 °C, demonstrating the stabilizing effect of immobilization of the molecular complex. Above 70 °C the grafted complex converts into the two methylidyne surface complexes [(≡SiO-)W(≡CH)Me2] and [(≡SiO-)2W(≡CH)Me]. All of these silica-supported complexes are active precursors for propane metathesis reactions.


Inorganic Chemistry | 2011

Gold(III) N-heterocyclic carbene complexes mediated synthesis of β-enaminones from 1,3-dicarbonyl compounds and aliphatic amines.

Manoja K. Samantaray; Chandrakanta Dash; Mobin M. Shaikh; Keliang Pang; Ray J. Butcher; Prasenjit Ghosh

A series of gold(III) N-heterocyclic carbene complexes [1-(R(1))-3-(R(2))imidazol-2-ylidene]AuBr(3) [R(1) = i-Pr, R(2) = CH(2)Ph (1c); R(1) = mesityl, R(2) = CH(2)Ph (2c); R(1) = i-Pr, R(2) = CH(2)COt-Bu (3c), and R(1) = t-Bu, R(2) = CH(2)COt-Bu (4c)] act as effective precatalysts in the synthesis of β-enaminones from 1,3-dicarbonyl compounds and primary amines under ambient conditions. Specifically the 1c-4c complexes efficiently catalyzed the condensation of a variety of cyclic as well as acyclic 1,3-dicarbonyl compounds, namely, acetyl acetone, benzoylacetone, 2-acetylcyclopentanone, and ethyl-2-oxocyclopentanecarboxylate with primary aliphatic amines, viz., methylamine, ethylamine, n-propylamine, i-propylamine, and n-butylamine, yielding β-enamines at room temperature. Interestingly enough, the more electrophilic gold(III) 1c-4c complexes exhibited superior activity in comparison to the gold(I) counterparts 1b-4b. A comparison along a representative 4a-c series further underscored the importance of gold in the reaction as both the gold(I) 4b and gold(III) 4c complexes were more effective than the silver analogue 4a. The density functional theory (DFT) study revealed that the strong σ-donating nature of the N-heterocyclic carbene ligand results in a strong C(carbene)-Au(III) interaction in the 1c-4c complexes.


Journal of the American Chemical Society | 2017

Well-Defined Molybdenum Oxo Alkyl Complex Supported on Silica by Surface Organometallic Chemistry: A Highly Active Olefin Metathesis Precatalyst

Nicolas Merle; Frédéric Le Quéméner; Yassine Bouhoute; Kai C. Szeto; Aimery De Mallmann; Samir Barman; Manoja K. Samantaray; Laurent Delevoye; Régis M. Gauvin; Mostafa Taoufik; Jean-Marie Basset

The well-defined silica-supported molybdenum oxo alkyl species (≡SiO-)MoO(CH2tBu)3 was selectively prepared by grafting of MoO(CH2tBu)3Cl onto partially dehydroxylated silica (silica700) using the surface organometallic chemistry approach. This surface species was fully characterized by elemental analysis and DRIFT, solid-state NMR, and EXAFS spectroscopy. This new material is related to the active species of industrial supported MoO3/SiO2 olefin metathesis catalysts. It displays very high activity in propene self-metathesis at mild (turnover number = 90 000 after 25 h). Remarkably, its catalytic performance outpaces those of the parent imido derivative and its tungsten oxo analogue.


Chemistry: A European Journal | 2015

Effect of Support on Metathesis of n‐Decane: Drastic Improvement in Alkane Metathesis with WMe5 Linked to Silica–Alumina

Manoja K. Samantaray; Raju Dey; Edy Abou-Hamad; Ali Hamieh; Jean-Marie Basset

[WMe6 ] (1) supported on the surface of SiO2 -Al2 O3(500) (2) has been extensively characterized by solid-state NMR spectroscopy, elemental analysis, and gas quantification, which clearly reveal the formation of a mixture of monopodal and bipodal species with the migration of methyl from W to Al. The supported species SiO2 -Al2 O3(500) (2) transformed at 120 °C into two types of carbynic centers, one of which is cationic and the other neutral. These species are very efficient for the metathesis of n-decane. Comparison with already-synthesized neutral bipodal tungsten indicates that the high increase in activity is due to the cationic character of the grafted tungsten.


Chemistry: A European Journal | 2014

Cyclooctane Metathesis Catalyzed by Silica‐Supported Tungsten Pentamethyl [(SiO)W(Me)5]: Distribution of Macrocyclic Alkanes

Nassima Riache; Emmanuel Callens; Manoja K. Samantaray; Najeh M. Kharbatia; Muhammad Atiqullah; Jean-Marie Basset

Metathesis of cyclic alkanes catalyzed by the new surface complex [(≡SiO)W(Me)5] affords a wide distribution of cyclic and macrocyclic alkanes. The major products with the formula C(n)H(2n) are the result of either a ring contraction or ring expansion of cyclooctane leading to lower unsubstituted cyclic alkanes (5≤n≤7) and to an unprecedented distribution of unsubstituted macrocyclic alkanes (12≤n≤40), respectively, identified by GC/MS and by NMR spectroscopies.


Catalysis Science & Technology | 2015

Striking difference between alkane and olefin metathesis using the well-defined precursor [Si–O–WMe5]: indirect evidence in favour of a bifunctional catalyst W alkylidene–hydride

Nassima Riache; Emmanuel Callens; J. Espinas; A. Dery; Manoja K. Samantaray; Raju Dey; Jean-Marie Basset

Metathesis of linear alkanes catalyzed by the well-defined precursor (Si–O–WMe5) affords a wide distribution of linear alkanes from methane up to triacontane. Olefin metathesis using the same catalyst and under the same reaction conditions gives a very striking different distribution of linear α-olefins and internal olefins. This shows that olefin and alkane metathesis processes occur via very different pathways.


Journal of the American Chemical Society | 2017

Unearthing a Well-Defined Highly Active Bimetallic W/Ti Precatalyst Anchored on a Single Silica Surface for Metathesis of Propane

Manoja K. Samantaray; Santosh Kavitake; Natalia Morlanés; Edy Abou-Hamad; Ali Hamieh; Raju Dey; Jean-Marie Basset

Two compatible organometallic complexes, W(Me)6 (1) and TiNp4 (2), were successively anchored on a highly dehydroxylated single silica support (SiO2-700) to synthesize the well-defined bimetallic precatalyst [(≡Si-O-)W(Me)5(≡Si-O-)Ti(Np)3] (4). Precatalyst 4 was characterized at the molecular level using advanced surface organometallic chemistry (SOMC) characterization techniques. The strong autocorrelation observed between methyl of W and Ti in 1H-1H multiple-quantum NMR spectra demonstrates that W and Ti species are in close proximity to each other. The bimetallic precatalyst 4, with a turnover number (TON) of 9784, proved to be significantly more efficient than the silica-supported monometallic catalyst [(≡Si-O-)W(Me)5] (3), with a TON of 98, for propane metathesis at 150 °C in a flow reactor. The dramatic improvement in the activity signifies the cooperativity between Ti and W and indicates that the key step of alkane metathesis (C-H bond activation followed by β-H elimination) occurs on Ti, followed by olefin metathesis, which occurs on W. We have demonstrated the influence and importance of proximity of Ti to W for achieving such a significantly high activity. This is the first report demonstrating the considerably high activity (TON = 9784) in propane metathesis at moderate temperature (150 °C) using a well-defined bimetallic system prepared via the SOMC approach.


Inorganic Chemistry | 2017

SOMC-Designed Silica Supported Tungsten Oxo Imidazolin-2-iminato Methyl Precatalyst for Olefin Metathesis Reactions

Ziyauddin S. Qureshi; Ali Hamieh; Samir Barman; Niladri Maity; Manoja K. Samantaray; Samy Ould-Chikh; Edy Abou-Hamad; Laura Falivene; Valerio D’Elia; Alexander Rothenberger; Isabelle Llorens; Jean-Louis Hazemann; Jean-Marie Basset

Synthesis, structure, and olefin metathesis activity of a surface complex [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4) (ImDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-iminato) supported on silica by a surface organometallic chemistry (SOMC) approach are reported. The reaction of N-silylated 2-iminoimidazoline with tungsten(VI) oxytetrachloride generated the tungsten oxo imidazolin-2-iminato chloride complex [ImDippNW(═O)Cl3] (2). This was grafted on partially dehydroxylated silica pretreated at 700 °C (SiO2-700) to afford a well-defined monopodal surface complex [(≡Si-O-)W(═O)Cl2-ImDippN] (3). 3 underwent alkylation by ZnMe2 to produce [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4). The alkylated surface complex was thoroughly characterized by solid-state NMR, elemental microanalysis, Raman, FT-IR spectroscopies, and XAS analysis. 4 proved to be an active precatalyst for self-metathesis of terminal olefins such as propylene and 1-hexene.


Journal of the American Chemical Society | 2016

Synergy between Two Metal Catalysts: A Highly Active Silica-Supported Bimetallic W/Zr Catalyst for Metathesis of n-Decane

Manoja K. Samantaray; Raju Dey; Santosh Kavitake; Edy Abou-Hamad; Anissa Bendjeriou-Sedjerari; Ali Hamieh; Jean-Marie Basset

A well-defined, silica-supported bimetallic precatalyst [≡Si-O-W(Me)5≡Si-O-Zr(Np)3] (4) has been synthesized for the first time by successively grafting two organometallic complexes [W(Me)6 (1) followed by ZrNp4 (2)] on a single silica support. Surprisingly, multiple-quantum NMR characterization demonstrates that W and Zr species are in close proximity to each other. Hydrogenation of this bimetallic catalyst at room temperature showed the easy formation of zirconium hydride, probably facilitated by tungsten hydride which was formed at this temperature. This bimetallic W/Zr hydride precatalyst proved to be more efficient (TON = 1436) than the monometallic W hydride (TON = 650) in the metathesis of n-decane at 150 °C. This synergy between Zr and W suggests that the slow step of alkane metathesis is the C-H bond activation that occurs on Zr. The produced olefin resulting from a β-H elimination undergoes easy metathesis on W.

Collaboration


Dive into the Manoja K. Samantaray's collaboration.

Top Co-Authors

Avatar

Jean-Marie Basset

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Edy Abou-Hamad

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Raju Dey

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ali Hamieh

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Luigi Cavallo

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Emmanuel Callens

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Prasenjit Ghosh

Indian Institute of Technology Bombay

View shared research outputs
Top Co-Authors

Avatar

Samir Barman

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Santosh Kavitake

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Mobin M. Shaikh

Indian Institute of Technology Bombay

View shared research outputs
Researchain Logo
Decentralizing Knowledge