Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manolito Torralba is active.

Publication


Featured researches published by Manolito Torralba.


Science | 2010

A catalog of reference genomes from the human microbiome.

Karen E. Nelson; George M. Weinstock; Sarah K. Highlander; Kim C. Worley; Heather Huot Creasy; Jennifer R. Wortman; Douglas B. Rusch; Makedonka Mitreva; Erica Sodergren; Asif T. Chinwalla; Michael Feldgarden; Dirk Gevers; Brian J. Haas; Ramana Madupu; Doyle V. Ward; Bruce Birren; Richard A. Gibbs; Barbara A. Methé; Joseph F. Petrosino; Robert L. Strausberg; Granger Sutton; Owen White; Richard Wilson; Scott Durkin; Michelle G. Giglio; Sharvari Gujja; Clint Howarth; Chinnappa D. Kodira; Nikos C. Kyrpides; Teena Mehta

News from the Inner Tube of Life A major initiative by the U.S. National Institutes of Health to sequence 900 genomes of microorganisms that live on the surfaces and orifices of the human body has established standardized protocols and methods for such large-scale reference sequencing. By combining previously accumulated data with new data, Nelson et al. (p. 994) present an initial analysis of 178 bacterial genomes. The sampling so far barely scratches the surface of the microbial diversity found on humans, but the work provides an important baseline for future analyses. Standardized protocols and methods are being established for large-scale sequencing of the microorganisms living on humans. The human microbiome refers to the community of microorganisms, including prokaryotes, viruses, and microbial eukaryotes, that populate the human body. The National Institutes of Health launched an initiative that focuses on describing the diversity of microbial species that are associated with health and disease. The first phase of this initiative includes the sequencing of hundreds of microbial reference genomes, coupled to metagenomic sequencing from multiple body sites. Here we present results from an initial reference genome sequencing of 178 microbial genomes. From 547,968 predicted polypeptides that correspond to the gene complement of these strains, previously unidentified (“novel”) polypeptides that had both unmasked sequence length greater than 100 amino acids and no BLASTP match to any nonreference entry in the nonredundant subset were defined. This analysis resulted in a set of 30,867 polypeptides, of which 29,987 (~97%) were unique. In addition, this set of microbial genomes allows for ~40% of random sequences from the microbiome of the gastrointestinal tract to be associated with organisms based on the match criteria used. Insights into pan-genome analysis suggest that we are still far from saturating microbial species genetic data sets. In addition, the associated metrics and standards used by our group for quality assurance are presented.


The ISME Journal | 2013

Habitat degradation impacts black howler monkey ( Alouatta pigra ) gastrointestinal microbiomes

Katherine R. Amato; Carl J. Yeoman; Angela D. Kent; Nicoletta Righini; Franck Carbonero; Alejandro Estrada; H. Rex Gaskins; Rebecca M. Stumpf; Suleyman Yildirim; Manolito Torralba; Marcus Gillis; Brenda A. Wilson; Karen E. Nelson; Bryan A. White; Steven R. Leigh

The gastrointestinal (GI) microbiome contributes significantly to host nutrition and health. However, relationships involving GI microbes, their hosts and host macrohabitats remain to be established. Here, we define clear patterns of variation in the GI microbiomes of six groups of Mexican black howler monkeys (Alouatta pigra) occupying a gradation of habitats including a continuous evergreen rainforest, an evergreen rainforest fragment, a continuous semi-deciduous forest and captivity. High throughput microbial 16S ribosomal RNA gene sequencing indicated that diversity, richness and composition of howler GI microbiomes varied with host habitat in relation to diet. Howlers occupying suboptimal habitats consumed less diverse diets and correspondingly had less diverse gut microbiomes. Quantitative real-time PCR also revealed a reduction in the number of genes related to butyrate production and hydrogen metabolism in the microbiomes of howlers occupying suboptimal habitats, which may impact host health.


Hepatology | 2011

Enteric Dysbiosis Associated with a Mouse Model of Alcoholic Liver Disease

Arthur W. Yan; Derrick E. Fouts; Johannes Brandl; Peter Stärkel; Manolito Torralba; Eckart Schott; Hide Tsukamoto; Karen E. Nelson; David A. Brenner; Bernd Schnabl

The translocation of bacteria and bacterial products into the circulation contributes to alcoholic liver disease. Intestinal bacterial overgrowth is common in patients with alcoholic liver disease. The aims of our study were to investigate bacterial translocation, changes in the enteric microbiome, and its regulation by mucosal antimicrobial proteins in alcoholic liver disease. We used a mouse model of continuous intragastric feeding of alcohol or an isocaloric diet. Bacterial translocation occurred prior to changes observed in the microbiome. Quantitative changes in the intestinal microflora of these animals were assessed first using conventional culture techniques in the small and large intestine. Although we found no difference after 1 day or 1 week, intestinal bacterial overgrowth was observed in the gastrointestinal tract of mice fed alcohol for 3 weeks compared with control mice fed an isocaloric liquid diet. Because <20% of all gastrointestinal bacteria can be cultured using conventional methodologies, we performed massively parallel pyrosequencing to further assess the qualitative changes in the intestinal microbiome following alcohol exposure. Sequencing of 16S ribosomal RNA genes revealed a relative abundance of Bacteroidetes and Verrucomicrobia bacteria in mice fed alcohol compared with a relative predominance of Firmicutes bacteria in control mice. With respect to the hosts transcriptome, alcohol feeding was associated with down‐regulation in gene and protein expression of bactericidal c‐type lectins Reg3b and Reg3g in the small intestine. Treatment with prebiotics partially restored Reg3g protein levels, reduced bacterial overgrowth, and lessened alcoholic steatohepatitis. Conclusion: Alcohol feeding is associated with intestinal bacterial overgrowth and enteric dysbiosis. Intestinal antimicrobial molecules are dysregulated following chronic alcohol feeding contributing to changes in the enteric microbiome and to alcoholic steatohepatitis. (HEPATOLOGY 2011)


The ISME Journal | 2011

Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice

Kelly S. Swanson; Scot E. Dowd; Jan S. Suchodolski; Ingmar S. Middelbos; Brittany M. Vester; Kathleen A. Barry; Karen E. Nelson; Manolito Torralba; Bernard Henrissat; Pedro M. Coutinho; Isaac K. O. Cann; Bryan A. White; George C. Fahey

This study is the first to use a metagenomics approach to characterize the phylogeny and functional capacity of the canine gastrointestinal microbiome. Six healthy adult dogs were used in a crossover design and fed a low-fiber control diet (K9C) or one containing 7.5% beet pulp (K9BP). Pooled fecal DNA samples from each treatment were subjected to 454 pyrosequencing, generating 503 280 (K9C) and 505 061 (K9BP) sequences. Dominant bacterial phyla included the Bacteroidetes/Chlorobi group and Firmicutes, both of which comprised ∼35% of all sequences, followed by Proteobacteria (13–15%) and Fusobacteria (7–8%). K9C had a greater percentage of Bacteroidetes, Fusobacteria and Proteobacteria, whereas K9BP had greater proportions of the Bacteroidetes/Chlorobi group and Firmicutes. Archaea were not altered by diet and represented ∼1% of all sequences. All archaea were members of Crenarchaeota and Euryarchaeota, with methanogens being the most abundant and diverse. Three fungi phylotypes were present in K9C, but none in K9BP. Less than 0.4% of sequences were of viral origin, with >99% of them associated with bacteriophages. Primary functional categories were not significantly affected by diet and were associated with carbohydrates; protein metabolism; DNA metabolism; cofactors, vitamins, prosthetic groups and pigments; amino acids and derivatives; cell wall and capsule; and virulence. Hierarchical clustering of several gastrointestinal metagenomes demonstrated phylogenetic and metabolic similarity between dogs, humans and mice. More research is required to provide deeper coverage of the canine microbiome, evaluate effects of age, genetics or environment on its composition and activity, and identify its role in gastrointestinal disease.


Journal of Translational Medicine | 2012

Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury

Derrick E. Fouts; Rembert Pieper; Sebastian Szpakowski; Hans G. Pohl; Susan Knoblach; Moo-Jin Suh; Shih-Ting Huang; Inger Ljungberg; Bruce M. Sprague; Sarah Lucas; Manolito Torralba; Karen E. Nelson; Suzanne L. Groah

BackgroundClinical dogma is that healthy urine is sterile and the presence of bacteria with an inflammatory response is indicative of urinary tract infection (UTI). Asymptomatic bacteriuria (ABU) represents the state in which bacteria are present but the inflammatory response is negligible. Differentiating ABU from UTI is diagnostically challenging, but critical because overtreatment of ABU can perpetuate antimicrobial resistance while undertreatment of UTI can result in increased morbidity and mortality. In this study, we describe key characteristics of the healthy and ABU urine microbiomes utilizing 16S rRNA gene (16S rDNA) sequencing and metaproteomics, with the future goal of utilizing this information to personalize the treatment of UTI based on key individual characteristics.MethodsA cross-sectional study of 26 healthy controls and 27 healthy subjects at risk for ABU due to spinal cord injury-related neuropathic bladder (NB) was conducted. Of the 27 subjects with NB, 8 voided normally, 8 utilized intermittent catheterization, and 11 utilized indwelling Foley urethral catheterization for bladder drainage. Urine was obtained by clean catch in voiders, or directly from the catheter in subjects utilizing catheters. Urinalysis, urine culture and 16S rDNA sequencing were performed on all samples, with metaproteomic analysis performed on a subsample.ResultsA total of 589454 quality-filtered 16S rDNA sequence reads were processed through a NextGen 16S rDNA analysis pipeline. Urine microbiomes differ by normal bladder function vs. NB, gender, type of bladder catheter utilized, and duration of NB. The top ten bacterial taxa showing the most relative abundance and change among samples were Lactobacillales, Enterobacteriales, Actinomycetales, Bacillales, Clostridiales, Bacteroidales, Burkholderiales, Pseudomonadales, Bifidobacteriales and Coriobacteriales. Metaproteomics confirmed the 16S rDNA results, and functional human protein-pathogen interactions were noted in subjects where host defenses were initiated.ConclusionsCounter to clinical belief, healthy urine is not sterile. The healthy urine microbiome is characterized by a preponderance of Lactobacillales in women and Corynebacterium in men. The presence and duration of NB and method of urinary catheterization alter the healthy urine microbiome. An integrated approach of 16S rDNA sequencing with metaproteomics improves our understanding of healthy urine and facilitates a more personalized approach to prevention and treatment of infection.


PLOS ONE | 2010

Characterization of the Fecal Microbiome from Non-Human Wild Primates Reveals Species Specific Microbial Communities

Suleyman Yildirim; Carl J. Yeoman; Maksim Sipos; Manolito Torralba; Brenda A. Wilson; Tony L. Goldberg; Rebecca M. Stumpf; Steven R. Leigh; Bryan A. White; Karen E. Nelson

Background Host-associated microbes comprise an integral part of animal digestive systems and these interactions have a long evolutionary history. It has been hypothesized that the gastrointestinal microbiome of humans and other non-human primates may have played significant roles in host evolution by facilitating a range of dietary adaptations. We have undertaken a comparative sequencing survey of the gastrointestinal microbiomes of several non-human primate species, with the goal of better understanding how these microbiomes relate to the evolution of non-human primate diversity. Here we present a comparative analysis of gastrointestinal microbial communities from three different species of Old World wild monkeys. Methodology/Principal Findings We analyzed fecal samples from three different wild non-human primate species (black-and-white colobus [Colubus guereza], red colobus [Piliocolobus tephrosceles], and red-tailed guenon [Cercopithecus ascanius]). Three samples from each species were subjected to small subunit rRNA tag pyrosequencing. Firmicutes comprised the vast majority of the phyla in each sample. Other phyla represented were Bacterioidetes, Proteobacteria, Spirochaetes, Actinobacteria, Verrucomicrobia, Lentisphaerae, Tenericutes, Planctomycetes, Fibrobacateres, and TM7. Bray-Curtis similarity analysis of these microbiomes indicated that microbial community composition within the same primate species are more similar to each other than to those of different primate species. Comparison of fecal microbiota from non-human primates with microbiota of human stool samples obtained in previous studies revealed that the gut microbiota of these primates are distinct and reflect host phylogeny. Conclusion/Significance Our analysis provides evidence that the fecal microbiomes of wild primates co-vary with their hosts, and that this is manifested in higher intraspecies similarity among wild primate species, perhaps reflecting species specificity of the microbiome in addition to dietary influences. These results contribute to the limited body of primate microbiome studies and provide a framework for comparative microbiome analysis between human and non-human primates as well as a comparative evolutionary understanding of the human microbiome.


Journal of Hepatology | 2012

Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease.

Derrick E. Fouts; Manolito Torralba; Karen E. Nelson; David A. Brenner; Bernd Schnabl

BACKGROUND & AIMS Intestinal dysbiosis and bacterial translocation are common in patients with advanced liver disease, and there is strong evidence that the translocation of bacteria and their products across the epithelial barrier drives experimental liver disease progression. The aims of our study were to investigate dynamics of bacterial translocation and changes in the enteric microbiome in early stages of liver disease. METHODS Cholestatic liver injury was induced by ligation of the common bile duct (BDL) and toxic liver injury by injection of carbon tetrachloride (CCl(4)) in mice. RESULTS Increased intestinal permeability and bacterial translocation occurred one day following liver injury in both disease models. This was accompanied by decreased intestinal expression of the tight junction protein occludin. Although BDL resulted in a rapid onset of intestinal bacterial overgrowth, bacterial overgrowth was observed in mice injected with CCl(4) only in advanced stages of liver fibrosis. To further assess the qualitative changes in the intestinal microbiome, massively parallel pyrosequencing of 16S rRNA genes revealed minor microbial changes following BDL, while CCl(4) administration resulted in a relative abundance of Firmicutes and Actinobacteria compared with oil-injected mice. Four different liver disease models (cholestasis, toxic, alcohol, obesity) show few similarities in their intestinal microbiome. CONCLUSIONS Acute liver injury is associated with an early onset of increased intestinal permeability and bacterial translocation that precede changes in the microbiome. The enteric microbiome differs with respect to the etiology of liver disease.


PLOS ONE | 2012

Next Generation Sequencing to Define Prokaryotic and Fungal Diversity in the Bovine Rumen

Derrick E. Fouts; Sebastian Szpakowski; Janaki Purushe; Manolito Torralba; R. C. Waterman; M. D. MacNeil; Leeson J. Alexander; Karen E. Nelson

A combination of Sanger and 454 sequences of small subunit rRNA loci were used to interrogate microbial diversity in the bovine rumen of 12 cows consuming a forage diet. Observed bacterial species richness, based on the V1–V3 region of the 16S rRNA gene, was between 1,903 to 2,432 species-level operational taxonomic units (OTUs) when 5,520 reads were sampled per animal. Eighty percent of species-level OTUs were dominated by members of the order Clostridiales, Bacteroidales, Erysipelotrichales and unclassified TM7. Abundance of Prevotella species varied widely among the 12 animals. Archaeal species richness, also based on 16S rRNA, was between 8 and 13 OTUs, representing 5 genera. The majority of archaeal OTUs (84%) found in this study were previously observed in public databases with only two new OTUs discovered. Observed rumen fungal species richness, based on the 18S rRNA gene, was between 21 and 40 OTUs with 98.4–99.9% of OTUs represented by more than one read, using Good’s coverage. Examination of the fungal community identified numerous novel groups. Prevotella and Tannerella were overrepresented in the liquid fraction of the rumen while Butyrivibrio and Blautia were significantly overrepresented in the solid fraction of the rumen. No statistical difference was observed between the liquid and solid fractions in biodiversity of archaea and fungi. The survey of microbial communities and analysis of cross-domain correlations suggested there is a far greater extent of microbial diversity in the bovine rumen than previously appreciated, and that next generation sequencing technologies promise to reveal novel species, interactions and pathways that can be studied further in order to better understand how rumen microbial community structure and function affects ruminant feed efficiency, biofuel production, and environmental impact.


Gastroenterology | 2015

Supplementation of Saturated Long-chain Fatty Acids Maintains Intestinal Eubiosis and Reduces Ethanol-induced Liver Injury in Mice

Peng Chen; Manolito Torralba; Justin Tan; Mallory Embree; Karsten Zengler; Peter Stärkel; Jan-Peter van Pijkeren; Jessica DePew; Rohit Loomba; Samuel B. Ho; Jasmohan S. Bajaj; Ece Mutlu; Ali Keshavarzian; Hidekazu Tsukamoto; Karen E. Nelson; Derrick E. Fouts; Bernd Schnabl

BACKGROUND & AIMS Alcoholic liver disease is a leading cause of mortality. Chronic alcohol consumption is accompanied by intestinal dysbiosis, and development of alcoholic liver disease requires gut-derived bacterial products. However, little is known about how alterations to the microbiome contribute to pathogenesis of alcoholic liver disease. METHODS We used the Tsukamoto-French mouse model, which involves continuous intragastric feeding of isocaloric diet or alcohol for 3 weeks. Bacterial DNA from the cecum was extracted for deep metagenomic sequencing. Targeted metabolomics assessed concentrations of saturated fatty acids in cecal contents. To maintain intestinal metabolic homeostasis, diets of ethanol-fed and control mice were supplemented with saturated long-chain fatty acids (LCFA). Bacterial genes involved in fatty acid biosynthesis, amounts of lactobacilli, and saturated LCFA were measured in fecal samples of nonalcoholic individuals and patients with active alcohol abuse. RESULTS Analyses of intestinal contents from mice revealed alcohol-associated changes to the intestinal metagenome and metabolome, characterized by reduced synthesis of saturated LCFA. Maintaining intestinal levels of saturated fatty acids in mice resulted in eubiosis, stabilized the intestinal gut barrier, and reduced ethanol-induced liver injury. Saturated LCFA are metabolized by commensal Lactobacillus and promote their growth. Proportions of bacterial genes involved in fatty acid biosynthesis were lower in feces from patients with active alcohol abuse than controls. Total levels of LCFA correlated with those of lactobacilli in fecal samples from patients with active alcohol abuse but not in controls. CONCLUSIONS In humans and mice, alcohol causes intestinal dysbiosis, reducing the capacity of the microbiome to synthesize saturated LCFA and the proportion of Lactobacillus species. Dietary approaches to restore levels of saturated fatty acids in the intestine might reduce ethanol-induced liver injury in patients with alcoholic liver disease.


PLOS ONE | 2010

Comparative Genomics of Gardnerella vaginalis Strains Reveals Substantial Differences in Metabolic and Virulence Potential

Carl J. Yeoman; Suleyman Yildirim; Susan M. Thomas; A. Scott Durkin; Manolito Torralba; Granger Sutton; Christian Buhay; Yan Ding; Shannon Dugan-Rocha; Donna M. Muzny; Xiang Qin; Richard A. Gibbs; Steven R. Leigh; Rebecca M. Stumpf; Bryan A. White; Sarah K. Highlander; Karen E. Nelson; Brenda A. Wilson

Background Gardnerella vaginalis is described as a common vaginal bacterial species whose presence correlates strongly with bacterial vaginosis (BV). Here we report the genome sequencing and comparative analyses of three strains of G. vaginalis. Strains 317 (ATCC 14019) and 594 (ATCC 14018) were isolated from the vaginal tracts of women with symptomatic BV, while Strain 409-05 was isolated from a healthy, asymptomatic individual with a Nugent score of 9. Principal Findings Substantial genomic rearrangement and heterogeneity were observed that appeared to have resulted from both mobile elements and substantial lateral gene transfer. These genomic differences translated to differences in metabolic potential. All strains are equipped with significant virulence potential, including genes encoding the previously described vaginolysin, pili for cytoadhesion, EPS biosynthetic genes for biofilm formation, and antimicrobial resistance systems, We also observed systems promoting multi-drug and lantibiotic extrusion. All G. vaginalis strains possess a large number of genes that may enhance their ability to compete with and exclude other vaginal colonists. These include up to six toxin-antitoxin systems and up to nine additional antitoxins lacking cognate toxins, several of which are clustered within each genome. All strains encode bacteriocidal toxins, including two lysozyme-like toxins produced uniquely by strain 409-05. Interestingly, the BV isolates encode numerous proteins not found in strain 409-05 that likely increase their pathogenic potential. These include enzymes enabling mucin degradation, a trait previously described to strongly correlate with BV, although commonly attributed to non-G. vaginalis species. Conclusions Collectively, our results indicate that all three strains are able to thrive in vaginal environments, and therein the BV isolates are capable of occupying a niche that is unique from 409-05. Each strain has significant virulence potential, although genomic and metabolic differences, such as the ability to degrade mucin, indicate that the detection of G. vaginalis in the vaginal tract provides only partial information on the physiological potential of the organism.

Collaboration


Dive into the Manolito Torralba's collaboration.

Top Co-Authors

Avatar

Karen E. Nelson

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Andres Gomez

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl J. Yeoman

Montana State University

View shared research outputs
Top Co-Authors

Avatar

Shibu Yooseph

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Steven R. Leigh

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelvin Moncera

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Rembert Pieper

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Klára Vlčková

University of Veterinary and Pharmaceutical Sciences Brno

View shared research outputs
Researchain Logo
Decentralizing Knowledge