Manoranjan Sahoo
Rosalind Franklin University of Medicine and Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manoranjan Sahoo.
PLOS Pathogens | 2014
Manoranjan Sahoo; Laura del Barrio; Mark A. Miller; Fabio Re
Two distinct defense strategies can protect the host from infection: resistance is the ability to destroy the infectious agent, and tolerance is the ability to withstand infection by minimizing the negative impact it has on the hosts health without directly affecting pathogen burden. Burkholderia pseudomallei is a Gram-negative bacterium that infects macrophages and causes melioidosis. We have recently shown that inflammasome-triggered pyroptosis and IL-18 are equally important for resistance to B. pseudomallei, whereas IL-1β is deleterious. Here we show that the detrimental role of IL-1β during infection with B. pseudomallei (and closely related B. thailandensis) is due to excessive recruitment of neutrophils to the lung and consequent tissue damage. Mice deficient in the potentially damaging enzyme neutrophil elastase were less susceptible than the wild type C57BL/6J mice to infection, although the bacterial burdens in organs and the extent of inflammation were comparable between C57BL/6J and elastase-deficient mice. In contrast, lung tissue damage and vascular leakage were drastically reduced in elastase-deficient mice compared to controls. Bradykinin levels were higher in C57BL/6 than in elastase-deficient mice; administration of a bradykinin antagonist protected mice from infection, suggesting that increased vascular permeability mediated by bradykinin is one of the mechanisms through which elastase decreases host tolerance to melioidosis. Collectively, these results demonstrate that absence of neutrophil elastase increases host tolerance, rather than resistance, to infection by minimizing host tissue damage.
PLOS Pathogens | 2015
Laura del Barrio; Manoranjan Sahoo; Louis Lantier; Joseph M. Reynolds; Ivonne Ceballos-Olvera; Fabio Re
The role of IL-1β and IL-18 during lung infection with the gram-negative bacterium Francisella tularensis LVS has not been characterized in detail. Here, using a mouse model of pneumonic tularemia, we show that both cytokines are protective, but through different mechanisms. Il-18-/- mice quickly succumb to the infection and showed higher bacterial burden in organs and lower level of IFNγ in BALF and serum compared to wild type C57BL/6J mice. Administration of IFNγ rescued the survival of Il-18-/- mice, suggesting that their decreased resistance to tularemia is due to inability to produce IFNγ. In contrast, mice lacking IL-1 receptor or IL-1β, but not IL-1α, appeared to control the infection in its early stages, but eventually succumbed. IFNγ administration had no effect on Il-1r1-/- mice survival. Rather, Il-1r1-/- mice were found to have significantly reduced titer of Ft LPS-specific IgM. The anti-Ft LPS IgM was generated in a IL-1β-, TLR2-, and ASC-dependent fashion, promoted bacteria agglutination and phagocytosis, and was protective in passive immunization experiments. B1a B cells produced the anti-Ft LPS IgM and these cells were significantly decreased in the spleen and peritoneal cavity of infected Il-1b-/- mice, compared to C57BL/6J mice. Collectively, our results show that IL-1β and IL-18 activate non-redundant protective responses against tularemia and identify an essential role for IL-1β in the rapid generation of pathogen-specific IgM by B1a B cells.
Molecular Oncology | 2018
Gajendra K. Katara; Arpita Kulshrestha; Liqun Mao; Xin Wang; Manoranjan Sahoo; Safaa A. Ibrahim; Sahithi Pamarthy; Kimiko Suzue; Gajendra Shekhawat; Alice Gilman-Sachs; Kenneth D. Beaman
Extracellular matrix (ECM) critically impacts tumor progression and is influenced by both cancer and host tissue cells. While our understanding of cancer cell ECM remodeling is widespread, the importance of host tissue ECM, which provides initial congenial environment for primary tumor formation, is partly understood. Here, we report a novel role of epithelial cell‐associated vacuolar ATPase ‘a2’ isoform (a2V) in regulating breast tissue ECM stiffness to control metastasis. Using a mammary gland‐specific a2V‐knockout model, we show that in the absence of a2V, breast tumors exhibit atypically soft tumor phenotype, less tumor rigidity, and necrotic tumor microenvironment. These tumors contain a decreased number of cancer cells at primary tumor site, but showed extensive metastases compared to control. Nanomechanical evaluation of normal breast tissues revealed a decrease in stiffness and collagen content in ECM of a2V‐deleted breast tissues. Mechanistically, inhibition of a2V expression caused dispersed Golgi morphology with relocation of glycosyltransferase enzymes to early endosomes in mammary epithelial cells. This resulted in defective glycosylation of ECM proteins and production of compromised ECM that further influenced tumor metastasis. Clinically, in patients with cancer, low a2V expression levels in normal breast tissue correlated with lymph node metastasis. Thus, using a new knockout mouse model, we have identified a2V expression in epithelial cells as a key requirement for proper ECM formation in breast tissue and its expression levels can significantly modulate breast tumor dissemination. Evaluation of a2V expression in normal breast tissues can help in identifying patients with high risk of developing metastases.
PLOS Pathogens | 2018
Jinyong Wang; Manoranjan Sahoo; Louis Lantier; Jonathan M. Warawa; Hector Cordero; Kelly Deobald; Fabio Re
Infection with Burkholderia pseudomallei or B. thailandensis triggers activation of the NLRP3 and NLRC4 inflammasomes leading to release of IL-1β and IL-18 and death of infected macrophages by pyroptosis, respectively. The non-canonical inflammasome composed of caspase-11 is also activated by these bacteria and provides protection through induction of pyroptosis. The recent generation of bona fide caspase-1-deficient mice allowed us to reexamine in a mouse model of pneumonic melioidosis the role of caspase-1 independently of caspase-11 (that was also absent in previously generated Casp1-/- mice). Mice lacking either caspase-1 or caspase-11 were significantly more susceptible than wild type mice to intranasal infection with B. thailandensis. Absence of caspase-1 completely abolished production of IL-1β and IL-18 as well as pyroptosis of infected macrophages. In contrast, in mice lacking caspase-11 IL-1β and IL-18 were produced at normal level and macrophages pyroptosis was only marginally affected. Adoptive transfer of bone marrow indicated that caspase-11 exerted its protective action both in myeloid cells and in radio-resistant cell types. B. thailandensis was shown to readily infect mouse lung epithelial cells triggering pyroptosis in a caspase-11-dependent way in vitro and in vivo. Importantly, we show that lung epithelial cells do not express inflammasomes components or caspase-1 suggesting that this cell type relies exclusively on caspase-11 for undergoing cell death in response to bacterial infection. Finally, we show that IL-18’s protective action in melioidosis was completely dependent on its ability to induce IFNγ production. In turn, protection conferred by IFNγ against melioidosis was dependent on generation of ROS through the NADPH oxidase but independent of induction of caspase-11. Altogether, our results identify two non-redundant protective roles for caspase-1 and caspase-11 in melioidosis: Caspase-1 primarily controls pyroptosis of infected macrophages and production of IL-18. In contrast, caspase-11 mediates pyroptosis of infected lung epithelial cells.
Oncotarget | 2018
Manoranjan Sahoo; Gajendra K. Katara; Mahmood Y. Bilal; Safaa A. Ibrahim; Arpita Kulshrestha; Sara Fleetwood; Kimiko Suzue; Kenneth D. Beaman
The interaction of recruited immune effector cells and cancer cells within tumor microenvironment (TME) shapes the fate of cancer progression and metastasis. Many cancers including breast cancer, express a specific vacuolar ATPase (a2V) on their cell surface which acidifies the extracellular milieu helping cancer cell proliferation and metastasis. To understand the role of immune cell-associated-a2V during breast tumor pathogenesis, we knocked-out a2V (KO) from the hematopoietic stem cells (HSC) and generated breast tumors in mice. The a2V-KO mice developed faster growing, larger, and metastatic breast tumors compared to control mice. Further investigation of the TME revealed a significant reduction in the presence of CD4+ and CD8+ T cells in the a2V-KO tumors. Targeted RNA-Seq of the cells of the TME demonstrated that pro-inflammatory cytokines, death receptors, death receptor ligands, and cytotoxic effectors were significantly down-regulated within the a2V-KO TME. Interestingly, analysis of immune cells in the blood, spleen, and thymus of the non-tumor bearing a2V-KO mice revealed a significant decrease in CD4+ and CD8+ T cell populations. For the first time, this study demonstrates that inhibition of V-ATPase expression in HSC leads to a decrease in CD4+ and CD8+ T cell populations and thus promotes breast tumor growth and metastasis.
Current Topics in Microbiology and Immunology | 2016
Manoranjan Sahoo; Louis Lantier; Fabio Re
Burkholderia pseudomallei is a Gram-negative flagellate bacterium that causes melioidosis, a disease endemic to Southeast Asia and other tropical regions. Following infection of macrophages and other non-phagocytic cell types, B. pseudomallei or B. thailandensis (a related species that causes disease in mice but not humans) are able to escape the phagosome and replicate in the host cell cytoplasm. Resistance to infection with Burkholderia is dependent on the Nlrp3 and Nlrc4 inflammasomes and the non-canonical caspase-11 inflammasome. Nlrc4 mediates protection through induction of pyroptosis in the early phase of infection. As the infection progresses and as IL-18-dependent IFNγ production increases, caspase-11-dependent pyroptosis acquires a preponderant protective role. Production of IL-1β and IL-18 during infection is primarily mediated by Nlrp3. IL-18 is essential for survival because of its ability to induce IFNγ production, which in turn activates macrophage microbicidal functions and primes for caspase-11 expression. In contrast, during melioidosis, IL-1β has deleterious effects due to excessive recruitment of neutrophils to the lung and consequent tissue damage.
Cancer Research | 2018
Arpita Kulshrestha; Gajendra K. Katara; Shayna Levine; Manoranjan Sahoo; Safaa A. Ibrahim; Alice Gilman-Sachs; Kenneth D. Beaman
Cancer Research | 2018
Safaa A. Ibrahim; Arpita Kulshrestha; Gajendra K. Katara; Manoranjan Sahoo; Kenneth D. Beaman
Cancer Research | 2018
Manoranjan Sahoo; Gajendra K. Katara; Mahamood Y. Bilal; Sara Fleetwood; Arpita Kulshrestha; Safaa A. Ibrahim; Kenneth D. Beaman
Cancer Research | 2018
Gajendra K. Katara; Arpita Kulshrestha; Manoranjan Sahoo; Kenneth D. Beaman