Manousos Makridakis
Academy of Athens
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manousos Makridakis.
Proteomics Clinical Applications | 2010
Harald Mischak; Walter Kolch; Michalis Aivaliotis; David Bouyssié; Magali Court; Hassan Dihazi; Gry H. Dihazi; Julia Franke; Jérôme Garin; Anne Gonzalez de Peredo; Alexander Iphöfer; Lothar Jänsch; Chrystelle Lacroix; Manousos Makridakis; Christophe Masselon; Jochen Metzger; Bernard Monsarrat; Michal Mrug; Martin Norling; Jan Novak; Andreas Pich; Andrew R. Pitt; Erik Bongcam-Rudloff; Justyna Siwy; Hitoshi Suzuki; Visith Thongboonkerd; Li-Shun Wang; Jerome Zoidakis; Petra Zürbig; Joost P. Schanstra
Purpose: Urine proteomics is emerging as a powerful tool for biomarker discovery. The purpose of this study is the development of a well‐characterized “real life” sample that can be used as reference standard in urine clinical proteomics studies.
Molecular & Cellular Proteomics | 2012
Jerome Zoidakis; Manousos Makridakis; Panagiotis Zerefos; Vasiliki Bitsika; Sergio Esteban; Maria Frantzi; Konstantinos Stravodimos; Nikolaos P. Anagnou; Maria G. Roubelakis; Marta Sanchez-Carbayo; Antonia Vlahou
Of the most important clinical needs for bladder cancer (BC) management is the identification of biomarkers for disease aggressiveness. Urine is a “gold mine” for biomarker discovery, nevertheless, with multiple proteins being in low amounts, urine proteomics becomes challenging. In the present study we applied a fractionation strategy of urinary proteins based on the use of immobilized metal affinity chromatography for the discovery of biomarkers for aggressive BC. Urine samples from patients with non invasive (two pools) and invasive (two pools) BC were subjected to immobilized metal affinity chromatography fractionation and eluted proteins analyzed by 1D-SDS-PAGE, band excision and liquid chromatography tandem MS. Among the identified proteins, multiple corresponded to proteins with affinity for metals and/or reported to be phosphorylated and included proteins with demonstrated association with BC such as MMP9, fibrinogen forms, and clusterin. In agreement to the immobilized metal affinity chromatography results, aminopeptidase N, profilin 1, and myeloblastin were further found to be differentially expressed in urine from patients with invasive compared with non invasive BC and benign controls, by Western blot or Elisa analysis, nevertheless exhibiting high interindividual variability. By tissue microarray analysis, profilin 1 was found to have a marked decrease of expression in the epithelial cells of the invasive (T2+) versus high risk non invasive (T1G3) tumors with occasional expression in stroma; importantly, this pattern strongly correlated with poor prognosis and increased mortality. The functional relevance of profilin 1 was investigated in the T24 BC cells where blockage of the protein by the use of antibodies resulted in decreased cell motility with concomitant decrease in actin polymerization. Collectively, our study involves the application of a fractionation method of urinary proteins and as one main result of this analysis reveals the association of profilin 1 with BC paving the way for its further investigation in BC stratification.
Biochimica et Biophysica Acta | 2013
Manousos Makridakis; Maria G. Roubelakis; Antonia Vlahou
Stem cells have been considered as possible therapeutic vehicles for different health related problems such as cardiovascular and neurodegenerative diseases and cancer. Secreted molecules are key mediators in cell-cell interactions and influence the cross talk with the surrounding tissues. There is strong evidence supporting that crucial cellular functions such as proliferation, differentiation, communication and migration are strictly regulated from the cell secretome. The investigation of stem cell secretome is accumulating continuously increasing interest given the potential use of these cells in regenerative medicine. The scope of the review is to report the main findings from the investigation of stem cell secretome by the use of contemporary proteomics methods and discuss the current status of research in the field. This article is part of a Special Issue entitled: An Updated Secretome.
Journal of Cellular and Molecular Medicine | 2011
Maria G. Roubelakis; Vasiliki Bitsika; Dimitra Zagoura; Ourania Trohatou; Kalliopi I. Pappa; Manousos Makridakis; A. Antsaklis; Antonia Vlahou; Nicholas P. Anagnou
Human mesenchymal progenitor cells (MPCs) are considered to be of great promise for use in tissue repair and regenerative medicine. MPCs represent multipotent adherent cells, able to give rise to multiple mesenchymal lineages such as osteoblasts, adipocytes or chondrocytes. Recently, we identified and characterized human second trimester amniotic fluid (AF) as a novel source of MPCs. Herein, we found that early colonies of AF‐MPCs consisted of two morphologically distinct adherent cell types, termed as spindle‐shaped (SS) and round‐shaped (RS). A detailed analysis of these two populations showed that SS‐AF‐MPCs expressed CD90 antigen in a higher level and exhibited a greater proliferation and differentiation potential. To characterize better the molecular identity of these two populations, we have generated a comparative proteomic map of SS‐AF‐MPCs and RS‐AF‐MPCs, identifying 25 differentially expressed proteins and 10 proteins uniquely expressed in RS‐AF‐MPCs. Furthermore, SS‐AF‐MPCs exhibited significantly higher migration ability on extracellular matrices, such as fibronectin and laminin in vitro, compared to RS‐AF‐MPCs and thus we further evaluated SS‐AF‐MPCs for potential use as therapeutic tools in vivo. Therefore, we tested whether GFP‐lentiviral transduced SS‐AF‐MPCs retained their stem cell identity, proliferation and differentiation potential. GFP‐SS‐AF‐MPCs were then successfully delivered into immunosuppressed mice, distributed in different tissues and survived longterm in vivo. In summary, these results demonstrated that AF‐MPCs consisted of at least two different MPC populations. In addition, SS‐AF‐MPCs, isolated based on their colony morphology and CD90 expression, represented the only MPC population that can be expanded easily in culture and used as an efficient tool for future in vivo therapeutic applications.
Stem Cells and Development | 2012
Vasiliki Bitsika; Maria G. Roubelakis; Dimitra Zagoura; Ourania Trohatou; Manousos Makridakis; Kalliopi I. Pappa; Frank C. Marini; Antonia Vlahou; Nicholas P. Anagnou
Recent studies support cell-based therapies for cancer treatment. An advantageous cell type for such therapeutic schemes are the mesenchymal stem cells (MSCs) that can be easily propagated in culture, genetically modified to express therapeutic proteins, and exhibit an innate tropism to solid tumors in vivo. Recently, we successfully isolated and expanded MSCs from second-trimester amniotic fluid (AF-MSCs). The main characteristic of AF-MSCs is their efficient and rapid expansion in vitro. Herein, we investigated the AF-MSCs tropism and capability to transport interferon beta (IFNβ) to the region of neoplasia in a bladder tumor model. To this end, we used the T24M bladder cancer cell line, previously generated from our studies, and developed a disease progression model in immunosuppressed mice, that can recapitulate the molecular events of bladder carcinogenesis. Our results documented that AF-MSCs exhibited high motility, when migrated either to T24M cells or to T24M-conditioned medium, and we further identified and studied the secreted factors which may trigger these enhanced migratory properties. Further, lentivirus-transduced AF-MSCs, expressing green fluorescent protein (GFP) or IFNβ, were intravenously administered to T24M tumor-bearing animals at multiple doses to examine their therapeutic effect. GFP- and IFNβ-AF-MSCs successfully migrated and colonized at the tumor site. Notably, significant inhibition of tumor growth as well as prolonged survival of mice were observed in the presence of IFNβ-AF-MSCs. Collectively, these results document the great potential of AF-MSCs as anti-cancer vehicles, implemented by the targeting of the tumor site and further facilitated by their high proliferation rate and expansion efficiency in culture.
PLOS ONE | 2015
Agnieszka Latosinska; Konstantinos Vougas; Manousos Makridakis; Julie Klein; William Mullen; Mahmoud Abbas; Konstantinos Stravodimos; Ioannis Katafigiotis; Axel S. Merseburger; Jerome Zoidakis; Harald Mischak; Antonia Vlahou; Vera Jankowski
High resolution proteomics approaches have been successfully utilized for the comprehensive characterization of the cell proteome. However, in the case of quantitative proteomics an open question still remains, which quantification strategy is best suited for identification of biologically relevant changes, especially in clinical specimens. In this study, a thorough comparison of a label-free approach (intensity-based) and 8-plex iTRAQ was conducted as applied to the analysis of tumor tissue samples from non-muscle invasive and muscle-invasive bladder cancer. For the latter, two acquisition strategies were tested including analysis of unfractionated and fractioned iTRAQ-labeled peptides. To reduce variability, aliquots of the same protein extract were used as starting material, whereas to obtain representative results per method further sample processing and MS analysis were conducted according to routinely applied protocols. Considering only multiple-peptide identifications, LC-MS/MS analysis resulted in the identification of 910, 1092 and 332 proteins by label-free, fractionated and unfractionated iTRAQ, respectively. The label-free strategy provided higher protein sequence coverage compared to both iTRAQ experiments. Even though pre-fraction of the iTRAQ labeled peptides allowed for a higher number of identifications, this was not accompanied by a respective increase in the number of differentially expressed changes detected. Validity of the proteomics output related to protein identification and differential expression was determined by comparison to existing data in the field (Protein Atlas and published data on the disease). All methods predicted changes which to a large extent agreed with published data, with label-free providing a higher number of significant changes than iTRAQ. Conclusively, both label-free and iTRAQ (when combined to peptide fractionation) provide high proteome coverage and apparently valid predictions in terms of differential expression, nevertheless label-free provides higher sequence coverage and ultimately detects a higher number of differentially expressed proteins. The risk for receiving false associations still exists, particularly when analyzing highly heterogeneous biological samples, raising the need for the analysis of higher sample numbers and/or application of adjustment for multiple testing.
Molecular & Cellular Proteomics | 2008
Panagiotis M. Karamessinis; Ariadne Malamitsi-Puchner; Theodora Boutsikou; Manousos Makridakis; Konstantinos Vougas; Michael Fountoulakis; Antonia Vlahou; George P. Chrousos
Intrauterine growth restriction (IUGR) has been associated with increased perinatal morbidity and mortality and increased morbidity and metabolic abnormalities later in life. IUGR is characterized as the failure of a fetus to achieve his or her genetic growth potential in utero. Altered protein expression profiles associated with IUGR may be informative on the pathologic mechanisms of this condition and might reveal potential markers for postnatal complications. The aim of this study was to compare protein profiles of umbilical cord plasma from IUGR and appropriate for gestational age full-term neonates. Blood samples from doubly clamped umbilical cord at delivery from 10 IUGR and 10 appropriate for gestational age full-term neonates were analyzed by two-dimensional electrophoresis and MS. Prominent changes of the α2-HS glycoprotein/fetuin-A were observed in IUGR cases. Specifically we showed that these changes occur primarily at the level of post-translational modifications of the protein. Using a combination of mass spectrometry and classical biochemical assays, single and heavy chain forms of fetuin-A were found to lack the normally present O-linked sialic acids in IUGR neonates. Fetuin A is a glycoprotein that has been associated with promotion of in vitro cell replication, fetal growth and osteogenesis, and protection from Gram-negative bacterial endotoxins. Prominent defects in glycosylation/sialylation of fetuin-A revealed by our study might be responsible for impaired function of fetuin-A, leading to deficient fetal growth, especially osteogenesis, and/or to the development of complications frequently seen later in the lives of IUGR neonates.
Journal of Proteome Research | 2010
Manousos Makridakis; Maria G. Roubelakis; Vasiliki Bitsika; Veronica Dimuccio; Martina Samiotaki; Sophia Kossida; George Panayotou; Jonathan A. Coleman; Giovanni Candiano; Nikolaos P. Anagnou; Antonia Vlahou
Secreted proteins play a key role in cell signaling, communication, and migration. We recently described the development of an aggressive variant (T24M) of the bladder cancer cell line T24. Using this cell line model, the objective of our work was the identification of secreted proteins involved in the acquisition of the aggressive phenotype. Using in vitro assays, we demonstrate that conditioned media of the T24M cells promote motility of the parental less aggressive T24 cells. Proteomic analysis of cell culture conditioned media by the use of 2-dimensional gel electrophoresis coupled to MALDI TOF MS and LC-MS approaches resulted in enrichment and detection of multiple classical extracellular and secreted proteins such as fibronectin, cystatin, fibrillin, fibulin, interleukin 6, etc. Comparison of the secretome of the T24 and T24M cells indicated differences in proteins with potential involvement in the mechanisms of cell aggressiveness including SPARC, tPA, and clusterin. These findings were further confirmed by Western blot analysis. In the case of SPARC, further studies involving transwell assays indicated that blockage of the protein in the presence of SPARC-specific Abs results in decreased cell motility. Collectively, our study provides a 2DE-based comprehensive analysis of bladder cancer cell secretome. The results indicate various secreted proteins with potential involvement in bladder cancer cell aggressiveness and more specifically provide initial evidence for special role of SPARC in bladder cancer cell motility and invasiveness.
Current Opinion in Urology | 2012
Maria Frantzi; Manousos Makridakis; Antonia Vlahou
Purpose of reviewBladder cancer is associated with high recurrence and mortality rates. Development of accurate surveillance tests to evaluate disease aggressiveness and for prognosis of disease recurrence and progression is a major clinical need. At the molecular level bladder cancer displays a vast heterogeneity as reflected by the presence of multiple potential biomarkers associated with various disease phenotypes. The scope of this review is to briefly summarize the latest findings on biomarkers potentially beneficial in disease stratification based on aggressiveness and prognosis. Recent findingsMultiple potential biomarkers for bladder cancer have been identified corresponding to chromosome, DNA, and epigenetic alterations, as well as changes in RNA, miRNAs, and protein expression levels and modifications. We summarize some of the main biomarker findings reported in the past year that are considered to be potentially correlated to disease aggressiveness. A comparison to existing latest evidence from the classical US Food and Drug Administration-approved bladder cancer detection markers is made. SummaryPotential biomarkers detected noninvasively in urine specimens, as well as in excised tissue specimens following initial treatment, are briefly reported. The prognostic information provided may be significant, as multiple markers by now have been found to correlate with disease outcome. However, the studies presented were in general either too small, and/or the performance of the single biomarkers was moderate. The information presently available suggests that single biomarkers may be insufficient for effective monitoring and patient management. A concerted effort to establish panels of biomarkers based on the ample existing knowledge, and validate them in proper clinical trials is urgently needed.
Journal of Cell Science | 2016
Antigoni Diokmetzidou; Elisavet Soumaka; Ismini Kloukina; Mary Tsikitis; Manousos Makridakis; Aimilia Varela; Constantinos H. Davos; Spiros Georgopoulos; Vasiliki Anesti; Antonia Vlahou; Yassemi Capetanaki
ABSTRACT The association of desmin with the α-crystallin Β-chain (αΒ-crystallin; encoded by CRYAB), and the fact that mutations in either one of them leads to heart failure in humans and mice, suggests a potential compensatory interplay between the two in cardioprotection. To address this hypothesis, we investigated the consequences of αΒ-crystallin overexpression in the desmin-deficient (Des−/−) mouse model, which possesses a combination of the pathologies found in most cardiomyopathies, with mitochondrial defects as a hallmark. We demonstrated that cardiac-specific αΒ-crystallin overexpression ameliorates all these defects and improves cardiac function to almost wild-type levels. Protection by αΒ-crystallin overexpression is linked to maintenance of proper mitochondrial protein levels, inhibition of abnormal mitochondrial permeability transition pore activation and maintenance of mitochondrial membrane potential (Δψm). Furthermore, we found that both desmin and αΒ-crystallin are localized at sarcoplasmic reticulum (SR)–mitochondria-associated membranes (MAMs), where they interact with VDAC, Mic60 – the core component of mitochondrial contact site and cristae organizing system (MICOS) complex – and ATP synthase, suggesting that these associations could be crucial in mitoprotection at different levels. Highlighted Article: Both desmin and its partner chaperone αB-crystallin associate with mitochondria–sarcoplasmic-reticulum contact sites (MAMs), stabilizing MICOS super-complexes, and thus contributing to proper mitochondrial cristae structure–function.