Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mans Broekgaarden is active.

Publication


Featured researches published by Mans Broekgaarden.


Pharmacological Reviews | 2013

The Molecular Basis for the Pharmacokinetics and Pharmacodynamics of Curcumin and Its Metabolites in Relation to Cancer

Michal Heger; Rowan F. van Golen; Mans Broekgaarden; Martin C. Michel

This review addresses the oncopharmacological properties of curcumin at the molecular level. First, the interactions between curcumin and its molecular targets are addressed on the basis of curcumin’s distinct chemical properties, which include H-bond donating and accepting capacity of the β-dicarbonyl moiety and the phenylic hydroxyl groups, H-bond accepting capacity of the methoxy ethers, multivalent metal and nonmetal cation binding properties, high partition coefficient, rotamerization around multiple C–C bonds, and the ability to act as a Michael acceptor. Next, the in vitro chemical stability of curcumin is elaborated in the context of its susceptibility to photochemical and chemical modification and degradation (e.g., alkaline hydrolysis). Specific modification and degradatory pathways are provided, which mainly entail radical-based intermediates, and the in vitro catabolites are identified. The implications of curcumin’s (photo)chemical instability are addressed in light of pharmaceutical curcumin preparations, the use of curcumin analogues, and implementation of nanoparticulate drug delivery systems. Furthermore, the pharmacokinetics of curcumin and its most important degradation products are detailed in light of curcumin’s poor bioavailability. Particular emphasis is placed on xenobiotic phase I and II metabolism as well as excretion of curcumin in the intestines (first pass), the liver (second pass), and other organs in addition to the pharmacokinetics of curcumin metabolites and their systemic clearance. Lastly, a summary is provided of the clinical pharmacodynamics of curcumin followed by a detailed account of curcumin’s direct molecular targets, whereby the phenotypical/biological changes induced in cancer cells upon completion of the curcumin-triggered signaling cascade(s) are addressed in the framework of the hallmarks of cancer. The direct molecular targets include the ErbB family of receptors, protein kinase C, enzymes involved in prostaglandin synthesis, vitamin D receptor, and DNA.


Annals of Biomedical Engineering | 2012

An Overview of Three Promising Mechanical, Optical, and Biochemical Engineering Approaches to Improve Selective Photothermolysis of Refractory Port Wine Stains

Guillermo Aguilar; Bernard Choi; Mans Broekgaarden; Owen Yang; Bruce Y. Yang; Pedram Ghasri; Jennifer K. Chen; Rick Bezemer; J. Stuart Nelson; Anne Margreet van Drooge; A. Wolkerstorfer; Kristen M. Kelly; Michal Heger

During the last three decades, several laser systems, ancillary technologies, and treatment modalities have been developed for the treatment of port wine stains (PWSs). However, approximately half of the PWS patient population responds suboptimally to laser treatment. Consequently, novel treatment modalities and therapeutic techniques/strategies are required to improve PWS treatment efficacy. This overview therefore focuses on three distinct experimental approaches for the optimization of PWS laser treatment. The approaches are addressed from the perspective of mechanical engineering (the use of local hypobaric pressure to induce vasodilation in the laser-irradiated dermal microcirculation), optical engineering (laser-speckle imaging of post-treatment flow in laser-treated PWS skin), and biochemical engineering (light- and heat-activatable liposomal drug delivery systems to enhance the extent of post-irradiation vascular occlusion).


Nano Research | 2016

Inhibition of hypoxia-inducible factor 1 with acriflavine sensitizes hypoxic tumor cells to photodynamic therapy with zinc phthalocyanine-encapsulating cationic liposomes

Mans Broekgaarden; Ruud Weijer; Massis Krekorian; Bas van den IJssel; Milan Kos; Lindy K. Alles; Albert C.W.A. van Wijk; Zsolt Bikádi; Eszter Hazai; Thomas M. van Gulik; Michal Heger

Photodynamic therapy (PDT) is a tumor treatment modality in which a tumorlocalized photosensitizer is excited with light, which results in local production of reactive oxygen species, destruction of tumor vasculature, tumor hypoxia, tumor cell death, and induction of an anti-tumor immune response. However, pre-existing tumor hypoxia may desensitize tumors to PDT by activating the hypoxia-inducible factor 1 (HIF-1) survival pathway. Therefore, we hypothesized that inhibition of HIF-1 with acriflavine (ACF) would exacerbate cell death in human epidermoid carcinoma (A431) cells. PDT of A431 tumor cells was performed using newly developed and optimized PEGylated cationic liposomes containing the photosensitizer zinc phthalocyanine (ZnPC). Molecular docking revealed that ACF binds to the dimerization domain of HIF-1α, and confocal microscopy confirmed translocation of ACF from the cytosol to the nucleus under hypoxia. HIF-1 was stabilized in hypoxic, but not normoxic, A431 cells following PDT. Inhibition of HIF-1 with ACF increased the extent of PDT-induced cell death under hypoxic conditions and reduced the expression of the HIF-1 target genes VEGF, PTGS2, and EDN1. Moreover, co-encapsulation of ACF in the aqueous core of ZnPC-containing liposomes yielded an adjuvant effect on PDT efficacy that was comparable to non-encapsulated ACF. In conclusion, HIF-1 contributes to A431 tumor cell survival following PDT with liposomal ZnPC. Inhibition of HIF-1 with free or liposomal ACF improves PDT efficacy.


Oncotarget | 2016

Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy

Ruud Weijer; Mans Broekgaarden; Massis Krekorian; Lindy K. Alles; Albert C.W.A. van Wijk; Claire Mackaaij; Joanne Verheij; Allard C. van der Wal; Thomas M. van Gulik; Gert Storm; Michal Heger

Background: Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression levels of HIF-1-associated proteins in human perihilar cholangiocarcinomas, (2) investigate the role of HIF-1 in PDT-treated human perihilar cholangiocarcinoma cells, and (3) determine whether HIF-1 inhibition reduces survival signaling and enhances PDT efficacy. Results: Increased expression of VEGF, CD105, CD31/Ki-67, and GLUT-1 was confirmed in human perihilar cholangiocarcinomas. PDT with liposome-delivered zinc phthalocyanine caused HIF-1α stabilization in SK-ChA-1 cells and increased transcription of HIF-1α downstream genes. Acriflavine was taken up by SK-ChA-1 cells and translocated to the nucleus under hypoxic conditions. Importantly, pretreatment of SK-ChA-1 cells with acriflavine enhanced PDT efficacy via inhibition of HIF-1 and topoisomerases I and II. Methods: The expression of VEGF, CD105, CD31/Ki-67, and GLUT-1 was determined by immunohistochemistry in human perihilar cholangiocarcinomas. In addition, the response of human perihilar cholangiocarcinoma (SK-ChA-1) cells to PDT with liposome-delivered zinc phthalocyanine was investigated under both normoxic and hypoxic conditions. Acriflavine, a HIF-1α/HIF-1β dimerization inhibitor and a potential dual topoisomerase I/II inhibitor, was evaluated for its adjuvant effect on PDT efficacy. Conclusions: HIF-1, which is activated in human hilar cholangiocarcinomas, contributes to tumor cell survival following PDT in vitro. Combining PDT with acriflavine pretreatment improves PDT efficacy in cultured cells and therefore warrants further preclinical validation for therapy-recalcitrant perihilar cholangiocarcinomas.


Lasers in Medical Science | 2014

Endovascular laser-tissue interactions and biological responses in relation to endovenous laser therapy

Michal Heger; Rowan F. van Golen; Mans Broekgaarden; Renate van den Bos; H. A. Martino Neumann; Thomas M. van Gulik; Martin J. C. van Gemert

Endovenous laser treatment (ELT) has evolved into a frequently employed modality for the treatment of leg varicose veins. Due to the very high complete response rates, minimal complications and side effects, and the possibility to monitor therapeutic outcome noninvasively by duplex ultrasound, a considerable amount of reports have been published on clinical and translational studies, whereas disproportionally few studies have been performed to elucidate the molecular and cellular basis for post-ELT vessel obliteration. Consequently, this review addresses the putative molecular and cellular mechanisms responsible for varicose vein obliteration following laser irradiation in the context of endovenous laser–tissue interactions. First, the histological profile of laser-treated varicose veins is summarized, and an account is given of the temporal and spatial dynamics of cells involved in inflammation and remodeling in the heat-affected vein segment. Inasmuch as thrombotic occlusion of the venous lumen blocks circulatory access to the affected vessel segment and thermal damage in the vascular wall causes most cells to die, the majority of cells involved in inflammation and remodeling have to be recruited. Second, the (possible) biochemical triggers for the chemotactic attraction of immune cells and fibroblasts are identified, comprising (1) thermal coagula, (2) thrombi, (3) dead and dying cells in the vein wall, and (4) thermally denatured extracellular matrix proteins in the vein wall. The molecular biology underlying the chemotactic signaling and subsequent obliterative remodeling is elucidated. Finally, the relative contribution of every biochemical trigger to obliterative remodeling is addressed.


International Journal of Molecular Sciences | 2015

Inhibition of NF-κB in Tumor Cells Exacerbates Immune Cell Activation Following Photodynamic Therapy.

Mans Broekgaarden; Milan Kos; Freek A. Jurg; Adriaan A. van Beek; Thomas M. van Gulik; Michal Heger

Although photodynamic therapy (PDT) yields very good outcomes in numerous types of superficial solid cancers, some tumors respond suboptimally to PDT. Novel treatment strategies are therefore needed to enhance the efficacy in these therapy-resistant tumors. One of these strategies is to combine PDT with inhibitors of PDT-induced survival pathways. In this respect, the transcription factor nuclear factor κB (NF-κB) has been identified as a potential pharmacological target, albeit inhibition of NF-κB may concurrently dampen the subsequent anti-tumor immune response required for complete tumor eradication and abscopal effects. In contrast to these postulations, this study demonstrated that siRNA knockdown of NF-κB in murine breast carcinoma (EMT-6) cells increased survival signaling in these cells and exacerbated the inflammatory response in murine RAW 264.7 macrophages. These results suggest a pro-death and immunosuppressive role of NF-κB in PDT-treated cells that concurs with a hyperstimulated immune response in innate immune cells.


Analytical Chemistry | 2017

Preparation and Practical Applications of 2′,7′-Dichlorodihydrofluorescein in Redox Assays

Megan J. Reiniers; Rowan F. van Golen; Sylvestre Bonnet; Mans Broekgaarden; Thomas M. van Gulik; Maarten R. Egmond; Michal Heger

Oxidative stress, a state in which intra- or extracellular oxidant production outweighs the antioxidative capacity, lies at the basis of many diseases. DCFH2-DA (2′,7′-dichlorodihydrofluorescein diacetate) is the most widely used fluorogenic probe for the detection of general oxidative stress. However, the use of DCFH2-DA, as many other fluorogenic redox probes, is mainly confined to the detection of intracellular oxidative stress in vitro. To expand the applicability of the probe, an alkaline hydrolysis and solvent extraction procedure was developed to generate high-purity DCFH2 (2′,7′-dichlorodihydrofluorescein) from DCFH2-DA using basic laboratory equipment. Next, the utility of DCFH2 was exemplified in a variety of cell-free and in vitro redox assay systems, including oxidant production by transition metals, photodynamic therapy, activated macrophages, and platelets, as well as the antioxidative capacity of different antioxidants. In cells, the concomitant use of DCFH2-DA and DCFH2 enabled the measurement and compartmentalized analysis of intra- and extracellularly produced oxidants, respectively, using a single read-out parameter. Furthermore, hepatocyte-targeted liposomes were developed to deliver the carboxylated derivative, 5(6)-carboxy-DCFH2, to hepatocytes in vivo. Liposome-delivered 5(6)-carboxy-DCFH2 enabled real-time visualization and measurement of hepatocellular oxidant production during liver ischemia-reperfusion. The liposomal 5(6)-carboxy-DCFH2 can be targeted to other tissues where oxidative stress is important, including cancer.


Oncotarget | 2018

Neoadjuvant photodynamic therapy augments immediate and prolonged oxaliplatin efficacy in metastatic pancreatic cancer organoids

Mans Broekgaarden; Imran Rizvi; Anne-Laure Bulin; Ljubica Petrovic; Ruth Goldschmidt; Jonathan P. Celli; Tayyaba Hasan

Effective treatment of advanced metastatic disease remains the primary challenge in the management of inoperable pancreatic cancer. Current therapies such as oxaliplatin (OxPt)-based chemotherapy regimens (FOLFIRINOX) provide modest short-term survival improvements, yet with significant toxicity. Photodynamic therapy (PDT), a light-activated cancer therapy, demonstrated clinical promise for pancreatic cancer treatment and enhances conventional chemotherapies with non-overlapping toxicities. This study investigates the capacity of neoadjuvant PDT using a clinically-approved photosensitizer, benzoporphyrin derivative (BPD, verteporfin), to enhance OxPt efficacy in metastatic pancreatic cancer. Treatment effects were evaluated in organotypic three-dimensional (3D) cultures, clinically representative models that bridge the gap between conventional cell cultures and in vivo models. The temporally-spaced, multiparametric analyses demonstrated a superior efficacy for combined PDT+OxPt compared to each monotherapy alone, which was recapitulated on different organotypic pancreatic cancer cultures. The therapeutic benefit of neoadjuvant PDT to OxPt chemotherapy materialized in a time-dependent manner, reducing residual viable tissue and tumor viability in a manner not achievable with OxPt or PDT alone. These findings emphasize the need for intelligent combination therapies and relevant models to evaluate the temporal kinetics of interactions between mechanistically-distinct treatments and highlight the promise of PDT as a neoadjuvant treatment for disseminated pancreatic cancer.


Journal of Biophotonics | 2016

Assesment of apoptosis induced changes in scattering using optical coherence tomography.

Daniel M. de Bruin; Mans Broekgaarden; Martin J. C. van Gemert; Michal Heger; Jean de la Rosette; Ton G. van Leeuwen; Dirk J. Faber

The aim of this study is to identify changes in scattering with optical coherence tomography (OCT) and relate these measurements with mitochondrial changes during the initiation of apoptosis. Human retinal pigment epithelial cells were cultured and apoptosis was induced using 10% alcohol. Using the attenuation coefficient and backscattering, changes were measured during cell death in a cell-pellet and monolayer respectively. To confirm apoptosis, fluorescent activated cell sorting was used. Mitochondrial activity during apoptosis was assessed using an oxidative stress assay and fluorescent confocal microscopy. Pelleted apoptotic cells measured with OCT showed a clear rise while untreated cells showed a very small increase in attenuation coefficient. Monolayered apoptotic cells displayed a distinct increase, while untreated cells showed a small increase in the backscattering. Apoptosis was confirmed by FACS experiments. Mitochondrial changes during the onset of apoptosis were also measured. The results demonstrate that apoptotic cell death could be monitored in real-time by OCT. Changes in the scattering after induction of apoptosis are likely to be related to changes in the intracellular morphology. Oxidative stress-induced mitochondrial swelling could be responsible for the initial increase, while cell blebbing and secondary necrosis subsequently for the observed decrease in scattering.


Journal of Photochemistry and Photobiology C-photochemistry Reviews | 2015

Enhancing photodynamic therapy of refractory solid cancers: Combining second-generation photosensitizers with multi-targeted liposomal delivery

Ruud Weijer; Mans Broekgaarden; Milan Kos; Remko van Vught; Erik A. J. Rauws; Eefjan Breukink; Thomas M. van Gulik; Gert Storm; Michal Heger

Collaboration


Dive into the Mans Broekgaarden's collaboration.

Top Co-Authors

Avatar

Michal Heger

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruud Weijer

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Milan Kos

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

M. Heger

Academic Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge