Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mansor Bin Ahmad is active.

Publication


Featured researches published by Mansor Bin Ahmad.


Molecules | 2013

Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications.

Mahnaz Mahdavi; Mansor Bin Ahmad; Md. Jelas Haron; Farideh Namvar; Behzad Nadi; Mohamad Zaki Ab. Rahman; Jamileh Amin

Superparamagnetic iron oxide nanoparticles (MNPs) with appropriate surface chemistry exhibit many interesting properties that can be exploited in a variety of biomedical applications such as magnetic resonance imaging contrast enhancement, tissue repair, hyperthermia, drug delivery and in cell separation. These applications required that the MNPs such as iron oxide Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) having high magnetization values and particle size smaller than 100 nm. This paper reports the experimental detail for preparation of monodisperse oleic acid (OA)-coated Fe3O4 MNPs by chemical co-precipitation method to determine the optimum pH, initial temperature and stirring speed in order to obtain the MNPs with small particle size and size distribution that is needed for biomedical applications. The obtained nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence spectrometry (EDXRF), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and vibrating sample magnetometer (VSM). The results show that the particle size as well as the magnetization of the MNPs was very much dependent on pH, initial temperature of Fe2+ and Fe3+ solutions and steering speed. The monodisperse Fe3O4 MNPs coated with oleic acid with size of 7.8 ± 1.9 nm were successfully prepared at optimum pH 11, initial temperature of 45 °C and at stirring rate of 800 rpm. FTIR and XRD data reveal that the oleic acid molecules were adsorbed on the magnetic nanoparticles by chemisorption. Analyses of TEM show the oleic acid provided the Fe3O4 particles with better dispersibility. The synthesized Fe3O4 nanoparticles exhibited superparamagnetic behavior and the saturation magnetization of the Fe3O4 nanoparticles increased with the particle size.


International Journal of Molecular Sciences | 2012

Synthesis and Characterization of Polyethylene Glycol Mediated Silver Nanoparticles by the Green Method

Kamyar Shameli; Mansor Bin Ahmad; Seyed Davoud Jazayeri; Sajjad Sedaghat; Parvaneh Shabanzadeh; Hossein Jahangirian; Mahnaz Mahdavi; Yadollah Abdollahi

The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs) in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG), and β-D-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD), zeta potential measurements and Fourier transform infrared (FT-IR). The use of green chemistry reagents, such as glucose, provides green and economic features to this work.


Molecules | 2013

Green Biosynthesis and Characterization of Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Seaweed (Sargassum muticum) Aqueous Extract

Mahnaz Mahdavi; Farideh Namvar; Mansor Bin Ahmad; Rosfarizan Mohamad

The synthesis of nanoparticles has become a matter of great interest in recent times due to their various advantageous properties and applications in a variety of fields. The exploitation of different plant materials for the biosynthesis of nanoparticles is considered a green technology because it does not involve any harmful chemicals. In this study, iron oxide nanoparticles (Fe3O4-NPs) were synthesized using a rapid, single step and completely green biosynthetic method by reduction of ferric chloride solution with brown seaweed (BS, Sargassum muticum) water extract containing sulphated polysaccharides as a main factor which acts as reducing agent and efficient stabilizer. The structural and properties of the Fe3O4-NPs were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray fluorescence spectrometry (EDXRF), vibrating sample magnetometry (VSM) and transmission electron microscopy. The average particle diameter as determined by TEM was found to be 18 ± 4 nm. X-ray diffraction showed that the nanoparticles are crystalline in nature, with a cubic shape. The nanoparticles synthesized through this biosynthesis method can potentially useful in various applications.


International Journal of Nanomedicine | 2011

Green synthesis and characterization of gelatin-based and sugar-reduced silver nanoparticles

Majid Darroudi; Mansor Bin Ahmad; Abdul Halim Abdullah; Nor Azowa Ibrahim

Silver nanoparticles (Ag-NPs) have been successfully prepared with simple and “green” synthesis method by reducing Ag+ ions in aqueous gelatin media with and in the absence of glucose as a reducing agent. In this study, gelatin was used for the first time as a reducing and stabilizing agent. The effect of temperature on particle size of Ag-NPs was also studied. It was found that with increasing temperature the size of nanoparticles is decreased. It was found that the particle size of Ag-NPs obtained in gelatin solutions is smaller than in gelatin–glucose solutions, which can be related to the rate of reduction reaction. X-ray diffraction, ultraviolet-visible spectra, transmission electron microscopy, and atomic force microscopy revealed the formation of monodispersed Ag-NPs with a narrow particle size distribution.


Chemistry Central Journal | 2012

Investigation of antibacterial properties silver nanoparticles prepared via green method

Kamyar Shameli; Mansor Bin Ahmad; Seyed Davoud Jazayeri; Parvaneh Shabanzadeh; Parvanh Sangpour; Hossein Jahangirian; Yadollah Gharayebi

BackgroundThis study aims to investigate the influence of different stirring times on antibacterial activity of silver nanoparticles in polyethylene glycol (PEG) suspension. The silver nanoparticles (Ag-NPs) were prepared by green synthesis method using green agents, polyethylene glycol (PEG) under moderate temperature at different stirring times. Silver nitrate (AgNO3) was taken as the metal precursor while PEG was used as the solid support and polymeric stabilizer. The antibacterial activity of different sizes of nanosilver was investigated against Gram–positive [Staphylococcus aureus] and Gram–negative bacteria [Salmonella typhimurium SL1344] by the disk diffusion method using Müeller–Hinton Agar.ResultsFormation of Ag-NPs was determined by UV–vis spectroscopy where surface plasmon absorption maxima can be observed at 412–437 nm from the UV–vis spectrum. The synthesized nanoparticles were also characterized by X-ray diffraction (XRD). The peaks in the XRD pattern confirmed that the Ag-NPs possessed a face-centered cubic and peaks of contaminated crystalline phases were unable to be located. Transmission electron microscopy (TEM) revealed that Ag-NPs synthesized were in spherical shape. The optimum stirring time to synthesize smallest particle size was 6 hours with mean diameter of 11.23 nm. Zeta potential results indicate that the stability of the Ag-NPs is increases at the 6 h stirring time of reaction. The Fourier transform infrared (FT-IR) spectrum suggested the complexation present between PEG and Ag-NPs. The Ag-NPs in PEG were effective against all bacteria tested. Higher antibacterial activity was observed for Ag-NPs with smaller size. These suggest that Ag-NPs can be employed as an effective bacteria inhibitor and can be applied in medical field.ConclusionsAg-NPs were successfully synthesized in PEG suspension under moderate temperature at different stirring times. The study clearly showed that the Ag-NPs with different stirring times exhibit inhibition towards the tested gram-positive and gram-negative bacteria.


International Journal of Nanomedicine | 2010

Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity

Kamyar Shameli; Mansor Bin Ahmad; Wan Md Zin Wan Yunus; Abdolhossein Rustaiyan; Nor Azowa Ibrahim; Mohsen Zargar; Yadollah Abdollahi

In this study, silver nanoparticles (Ag-NPs) were synthesized using a green physical synthetic route into the lamellar space of montmorillonite (MMT)/chitosan (Cts) utilizing the ultraviolet (UV) irradiation reduction method in the absence of any reducing agent or heat treatment. Cts, MMT, and AgNO3 were used as the natural polymeric stabilizer, solid support, and silver precursor, respectively. The properties of Ag/MMT/Cts bionanocomposites (BNCs) were studied as the function of UV irradiation times. UV irradiation disintegrated the Ag-NPs into smaller sizes until a relatively stable size and size distribution were achieved. Meanwhile, the crystalline structure and d-spacing of the MMT interlayer, average size and size distribution, surface morphology, elemental signal peaks, functional groups, and surface plasmon resonance of Ag/MMT/Cts BNCs were determined by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, Fourier transform infrared, and UV-visible spectroscopy. The antibacterial activity of Ag-NPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria (ie, Escherichia coli) by the disk diffusion method on Muller–Hinton Agar at different sizes of Ag-NPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biologic research and biomedical applications, such as surgical devices and drug delivery vehicles.


International Journal of Nanomedicine | 2010

Silver/poly (lactic acid) nanocomposites: Preparation, characterization, and antibacterial activity

Kamyar Shameli; Mansor Bin Ahmad; Wan Md Zin Wan Yunus; Nor Azowa Ibrahim; Russly Abdul Rahman; Maryam Jokar; Majid Darroudi

In this study, antibacterial characteristic of silver/poly (lactic acid) nanocomposite (Ag/PLA-NC) films was investigated, while silver nanoparticles (Ag-NPs) were synthesized into biodegradable PLA via chemical reduction method in diphase solvent. Silver nitrate and sodium borohydride were respectively used as a silver precursor and reducing agent in the PLA, which acted as a polymeric matrix and stabilizer. Meanwhile, the properties of Ag/PLA-NCs were studied as a function of the Ag-NP weight percentages (8, 16, and 32 wt% respectively), in relation to the use of PLA. The morphology of the Ag/PLA-NC films and the distribution of the Ag-NPs were also characterized. The silver ions released from the Ag/PLA-NC films and their antibacterial activities were scrutinized. The antibacterial activities of the Ag/PLA-NC films were examined against Gram-negative bacteria (Escherichia coli and Vibrio parahaemolyticus) and Gram-positive bacteria (Staphylococcus aureus) by diffusion method using Muller–Hinton agar. The results indicated that Ag/PLA-NC films possessed a strong antibacterial activity with the increase in the percentage of Ag-NPs in the PLA. Thus, Ag/PLA-NC films can be used as an antibacterial scaffold for tissue engineering and medical application.


International Journal of Nanomedicine | 2011

Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity

Kamyar Shameli; Mansor Bin Ahmad; Mohsen Zargar; Wan Md Zin Wan Yunus; Nor Azowa Ibrahim; Parvaneh Shabanzadeh; Mansour Ghaffari Moghaddam

Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24–1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28–9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles.


Molecules | 2011

Synthesis of Silver Nanoparticles in Chitosan, Gelatin and Chitosan/Gelatin Bionanocomposites by a Chemical Reducing Agent and Their Characterization

Mansor Bin Ahmad; Jenn Jye Lim; Kamyar Shameli; Nor Azowa Ibrahim; Mei Yen Tay

In this research, silver nanoparticles (AgNPs) were synthesized in chitosan (Cts), Cts/gelatin and gelatin suspensions using a chemical reducing agent. Cts and gelatin were used as natural stabilizers and solid support, whereas AgNO3 was used as the silver precursor. Sodium borohydride (NaBH4) was used as the reducing agent. The properties of AgNPs in Cts, Cts/gelatin and gelatin bionanocomposites (BNCs) were studied in terms of their surface plasmon resonance, crystalline structure, average diameter size, particle distributions, surface topography and functional groups. All the samples were characterized by UV-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, atomic force microscopy and Fourier transform infrared spectroscopy.


European Polymer Journal | 2000

Preparation and characterization of poly(amidoxime) chelating resin from polyacrylonitrile grafted sago starch

M. R. Lutfor; Sidik Silong; Wan Md Zin; M. Z. Ab. Rahman; Mansor Bin Ahmad; Jelas Haron

The preparation of a chelating ion-exchange resin containing amidoxime functional group was carried out by polyacrylonitrile (PAN) grafted sago starch. The PAN grafted copolymer was obtained by free-radical initiating process using ceric ammonium nitrate as an initiator. Conversion of nitrile groups of the grafted copolymer into the amidoxime was carried out by treatment with hydroxylamine under alkaline solution. The chelating poly(amidoxime) resin was characterized by FT-IR spectra, TG and DSC analyses. The chelating behavior of the prepared resin was carried out by using some metal ions. A significant binding property of metal ions by the chelating resin was observed and the maximum copper capacity was 3.0 mmol g ˇ1 at pH 6. The sorption capacities of metal ions by the resin were pHdependent, and its selectivity towards these metal ions is in the following order: Cu 2a >F e 3a >A s 3a >Z n 2a > Ni 2a >C d 2a >C o 2a >C r 3a >P b 2a . The rate of exchange was rapid, i.e. t1=2 < 9 min, based on the exchange of copper

Collaboration


Dive into the Mansor Bin Ahmad's collaboration.

Top Co-Authors

Avatar

Kamyar Shameli

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wan Md Zin Wan Yunus

National Defence University of Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mahiran Basri

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mahnaz Mahdavi

Universiti Putra Malaysia

View shared research outputs
Researchain Logo
Decentralizing Knowledge