Mansour Samadpour
Forest Park
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mansour Samadpour.
Applied and Environmental Microbiology | 2012
Hyatt C. Green; Linda K. Dick; Brent Gilpin; Mansour Samadpour; Katharine G. Field
ABSTRACT Avian feces contaminate waterways but contribute fewer human pathogens than human sources. Rapid identification and quantification of avian contamination would therefore be useful to prevent overestimation of human health risk. We used subtractive hybridization of PCR-amplified gull fecal 16S RNA genes to identify avian-specific fecal rRNA gene sequences. The subtracters were rRNA genes amplified from human, dog, cat, cow, and pig feces. Recovered sequences were related to Enterobacteriaceae (47%), Helicobacter (26%), Catellicoccus (11%), Fusobacterium (11%), and Campylobacter (5%). Three PCR assays, designated GFB, GFC, and GFD, were based on recovered sequence fragments. Quantitative PCR assays for GFC and GFD were developed using SYBR green. GFC detected down to 0.1 mg gull feces/100 ml (corresponding to 2 gull enterococci most probable number [MPN]/100 ml). GFD detected down to 0.1 mg chicken feces/100 ml (corresponding to 13 Escherichia coli MPN/100 ml). GFB and GFC were 97% and 94% specific to gulls, respectively. GFC cross-reacted with 35% of sheep samples but occurred at about 100,000 times lower concentrations in sheep. GFD was 100% avian specific and occurred in gulls, geese, chickens, and ducks. In the United States, Canada, and New Zealand, the three markers differed in their geographic distributions but were found across the range tested. These assays detected four important bird groups contributing to fecal contamination of waterways: gulls, geese, ducks, and chickens. Marker distributions across North America and in New Zealand suggest that they will have broad applicability in other parts of the world as well.
International Journal of Systematic and Evolutionary Microbiology | 2016
Anatoly P. Dobritsa; Mansour Samadpour
It has been proposed to split the genus Burkholderia into two genera according to phylogenetic clustering: (1) a genus retaining this name and consisting mainly of animal and plant pathogens and (2) the genus Paraburkholderia including so-called environmental bacteria. The latter genus name has been validly published recently. During the period between the effective and valid publications of the genus name Paraburkholderia, 16 novel species of the genus Burkholderiawere described, but only two of them can be classified as members of this genus based on the emended genus description. Analysis of traits and phylogenetic positions of the other 11 species shows that they belong to the genus Paraburkholderia, and we propose to transfer them to this genus. The reclassified species names are proposed as Paraburkholderia dipogonis comb. nov., Paraburkholderia ginsengiterrae comb. nov., Paraburkholderia humisilvae comb. nov., Paraburkholderia insulsa comb. nov., Paraburkholderia kirstenboschensis comb. nov., Paraburkholderia metalliresistens comb. nov., Paraburkholderia monticola comb. nov., Paraburkholderia panaciterrae comb. nov., Paraburkholderia rhizosphaerae comb. nov., Paraburkholderia solisilvae comb. nov. and Paraburkholderia susongensis comb. nov. The remaining three species are transferred to the new genus Caballeronia gen. nov. proposed to accommodate twelve species of the genera Burkholderia and Paraburkholderia forming a distinctive clade in phylogenetic trees. The new genus members are Caballeronia choica comb. nov., Caballeronia cordobensis comb. nov., Caballeronia glathei comb. nov., Caballeronia grimmiae comb. nov., Caballeronia humi comb. nov., Caballeronia megalochromosomata comb. nov., Caballeronia jiangsuensis comb. nov., Caballeronia sordidicola comb. nov., Caballeronia telluris comb. nov., Caballeronia terrestris comb. nov., Caballeronia udeis comb. nov., and Caballeronia zhejiangensis comb. nov.
International Journal of Systematic and Evolutionary Microbiology | 2010
Anatoly P. Dobritsa; M. C. S. Reddy; Mansour Samadpour
Resequencing of the 16S rRNA gene of the type strain of Herbaspirillum putei Ding and Yokota 2004 revealed 99.9 % sequence similarity to that of the type strain of Herbaspirillum huttiense (Leifson 1962) Ding and Yokota 2004. This high phylogenetic relatedness of H. putei and H. huttiense was confirmed by the results of DNA-DNA hybridization between H. huttiense DSM 10281(T) and H. putei ATCC BAA-806(T) (reassociation value 96 %). Therefore, it is proposed to reclassify the type strain of H. putei as a strain of H. huttiense. However, the genome of the type strain of H. putei is about 0.9 Mb larger than that of the H. huttiense type strain. This results in a decrease in the reassociation value in the reciprocal DNA-DNA hybridization to 72 %, a level slightly above the threshold for delineating bacterial species. These data and distinctive phenotypic characteristics indicate that the name Herbaspirillum putei is a later heterotypic synonym of Herbaspirillum huttiense and permit the description of two novel subspecies, Herbaspirillum huttiense subsp. huttiense subsp. nov. (type strain ATCC 14670(T) =JCM 21423(T) =DSM 10281(T)) and Herbaspirillum huttiense subsp. putei subsp. nov., comb. nov. (type strain 7-2(T) =JCM 21495(T) =ATCC BAA-806(T)). Three bacterial strains, IEH 4430(T), IEH 4515 and IEH 8757, isolated from water were found to be the closest relatives of these strains. Strain IEH 8757 was classified as a strain of H. huttiense subsp. putei. Studies of genotypic and phenotypic features of strains IEH 4430(T) and IEH 4515 showed that the strains represent a novel species, which is most closely related to H. huttiense and for which the name Herbaspirillum aquaticum sp. nov. is proposed (type strain IEH 4430(T) =DSM 21191(T) =ATCC BAA-1628(T)).
Journal of Agricultural and Food Chemistry | 2016
Eric A. E. Garber; Christine H. Parker; Sara M. Handy; Chung Y. Cho; Rakhi Panda; Mansour Samadpour; Danica H. Reynaud; George C. Ziobro
Beginning in the autumn of 2014, millions of dollars of food and over 675 products were recalled in the United States due to the presence of undeclared peanut, attributed to cumin used in the manufacture of the products. Initial analyses also indicated the presence of almond. Subsequent research showed that the presence of peanut and almond did not fully explain the analytical results for the cumin samples. Using a combination of mass spectrometry, DNA-based methods (i.e., PCR and Sanger DNA Sequencing), microscopy, and antibody-based technologies (i.e., ELISA, Western blot analysis, and a novel xMAP multiplex assay) the presence of peanut was confirmed. Screening for secondary sources of adulteration (e.g., tree nuts, mahleb, peach, and cherry) supported the assessment that the cumin contained multiple contaminants. These results demonstrate the limitations of single analyte-specific assays and the need for orthogonal multiplex methods to detect food allergens irrespective of varietal or other differences.
Journal of Microbiological Methods | 2013
Omar A. Oyarzabal; Aretha Williams; Ping Zhou; Mansour Samadpour
To improve the detection of Campylobacter spp. in retail broiler meat, a reference method (R subsamples) based on the enrichment of 25 g of meat in Bolton broth at 42°C under microaerobiosis was compared with an alternative method (A subsamples) consisting in the rinsing of meat samples for 30s in buffered peptone water with antimicrobials with incubation at 42°C under aerobiosis. One piece of meat (breasts, tenderloins and thighs) was rinse in experiment 1 (A1) and two pieces in experiment 2 (A2). Campylobacter spp. were isolated on agar plates and identified by PCR. Retail samples in Alabama had less prevalence (P ≤ 0.05) than samples in the state of Washington. The percentage of positive was higher (P ≤ 0.05) in A than in R subsamples and rinsing two pieces of meat yielded the highest percentage of positive subsamples. R subsamples showed variations in the prevalence by product. However, A subsamples had similar prevalence of positives among products compare to the result from reference method. More Campylobacter coli isolates were collected in A2 subsamples. Pulse field gel electrophoresis (PFGE) was used as subtyping method to study the genome similarity among the isolates from all methods. A larger diversity of isolates were detected by PFGE in A2 subsamples. Denaturing gradient gel electrophoresis analysis suggested that the initial bacterial populations of the meat samples impact the final bacterial profile after enrichment. Rinsing broiler meats was less time consuming, required less sample preparation and was more sensitive than the reference method for the isolation of naturally occurring Campylobacter spp. This new method could help with epidemiological and intervention studies to control Campylobacter spp.
Molecular and Cellular Probes | 2014
Jennifer M. Kooken; Karen F. Fox; Alvin Fox; Diego Altomare; Kim E. Creek; David S. Wunschel; Sara Pajares-Merino; Ilargi Martinez-Ballesteros; Javier Garaizar; Omar A. Oyarzabal; Mansour Samadpour
This report is among the first using sequence variation in newly discovered protein markers for staphylococcal (or indeed any other bacterial) speciation. Variation, at the DNA sequence level, in the sodA gene (commonly used for staphylococcal speciation) provided excellent correlation. Relatedness among strains was also assessed using protein profiling using microcapillary electrophoresis and pulsed field electrophoresis. A total of 64 strains were analyzed including reference strains representing the 11 staphylococcal species most commonly isolated from man (Staphylococcus aureus and 10 coagulase negative species [CoNS]). Matrix assisted time of flight ionization/ionization mass spectrometry (MALDI TOF MS) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC ESI MS/MS) were used for peptide analysis of proteins isolated from gel bands. Comparison of experimental spectra of unknowns versus spectra of peptides derived from reference strains allowed bacterial identification after MALDI TOF MS analysis. After LC-MS/MS analysis of gel bands bacterial speciation was performed by comparing experimental spectra versus virtual spectra using the software X!Tandem. Finally LC-MS/MS was performed on whole proteomes and data analysis also employing X!tandem. Aconitate hydratase and oxoglutarate dehydrogenase served as marker proteins on focused analysis after gel separation. Alternatively on full proteomics analysis elongation factor Tu generally provided the highest confidence in staphylococcal speciation.
Genome Announcements | 2014
Kirthi K. Kutumbaka; Sukkyun Han; James Mategko; Cesar Nadala; Genevieve L. Buser; Maureen P. Cassidy; Zintars G. Beldavs; Scott J. Weissman; Karim E. Morey; Robert Vega; Mansour Samadpour
ABSTRACT A multidrug-resistant NDM-1 carbapenamase-producing Escherichia coli sequence type 131 (ST131) organism was obtained from vacuum cleaner dust collected from the home of a case patient. Here, we report the assembly and annotation of its genome.
Meat Science | 2016
Jongkit Masiri; Lora Benoit; Brianda Barrios-Lopez; Cortlandt P. Thienes; Mahzad Meshgi; A. Agapov; Anatoly P. Dobritsa; Cesar Nadala; Mansour Samadpour
Mislabeling, contamination, and economic adulteration of meat products with undeclared pork tissues are illegal under regulations promulgated by numerous regulatory agencies. Nonetheless, analysis of the European meat industry has revealed pervasive meat adulteration, necessitating more extensive application of meat authentication testing. As existing methods for meat speciation require specialized equipment and/or training, we developed a detection system based on a lateral flow device (LFD) assay format capable of rapidly (~35min) identifying porcine residues derived from raw meat, cooked meat, and gelatin down to 0.01%, 1.0%, and 2.5% contamination, respectively. Specificity analysis revealed no cross-reactivity with meat derived from chicken, turkey, horse, beef, lamb, or goat. Comparison with a commercial ELISA kit and PCR method revealed similar if not improved sensitivity, with the added feature that the LFD-based system required considerably less time to perform. Accordingly, this test system should aid the food industry and food control authorities in monitoring for adulteration with pork.
International Journal of Systematic and Evolutionary Microbiology | 2016
Anatoly P. Dobritsa; Kirthi K. Kutumbaka; Mansour Samadpour
Whole-genome sequencing and PFGE analysis of Paraburkholderia ginsengiterrae DCY85T and Paraburkholderia panaciterrae DCY85-1T showed these strains are highly similar and may even be clones of the same strain. The PFGE patterns of XbaI-, AvaII-, and SpeI-digested genomic DNA of the two strains were indistinguishable. Based on the priority of valid publications of the species basonyms, Burkholderia ginsengiterrae and Burkholderia panaciterrae, it is proposed to reclassify P. panaciterrae as a later synonym of P. ginsengiterrae. The P. ginsengiterrae description was emended by replacing the DNA G+C content value of 66.0 mol%, which is higher than the 65 mol% considered the threshold for species of the genus Paraburkholderia, with the value of 62.4-62.5 mol%, calculated as the mean DNA G+C content of the draft genomes of strains DCY85-1T and DCY85T.
International Journal of Systematic and Evolutionary Microbiology | 2017
Anatoly P. Dobritsa; Kirthi K. Kutumbaka; Kirsten Werner; Martin Wiedmann; Aaron Asmus; Mansour Samadpour
Obligately anaerobic, Gram-stain-positive, spore-forming bacteria indistinguishable by pulsed-field gel electrophoresis were isolated from non-dairy protein shakes in bloated bottles. One of the isolates, strain IEH 97212T, was selected for further study. The strain was closely related to Clostridium sporogenes and Clostridium botulinum Group 1 based on 16S rRNA gene sequence similarities. Phylogenetic analysis also showed that strain IEH 97212T and strain PE (=DSM 18688), a bacterium isolated from solfataric mud, had identical 16S rRNA gene sequences. Strains IEH 97 212T and DSM 18 688 were relatively more thermophilic (temperature range for growth: 30-55 °C) and less halotolerant [growth range: 0-2.5 % (w/v) NaCl] than C. sporogenes and C. botulinum. They were negative for catalase, oxidase, urease and l-pyrrolidonyl-arylamidase and did not produce indole. The strains produced acid from d-glucose, maltose and trehalose, and hydrolysed gelatin, but did not hydrolyse aesculin. The end-products of growth included acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, isocaproic acid, phenylpropionic acid, 2-piperidinone, 2-pyrrolidinone and gas(es). The predominant fatty acids were C14 : 0, C16 : 0 and C18 : 1ω9c. The genomic DNA G+C content of strains IEH 97212T and DSM 18688 was 26.9 and 26.7 mol%, respectively. According to the digital DNA-DNA hybridization data, the relatedness of these strains was 98.4 %, while they showed only 35.7-36.0 % relatedness to C. sporogenes. Based on the results of this polyphasic study, these strains represent a novel species, for which the name Clostridium tepidum sp. nov. is proposed, with the type strain IEH 97212T (=NRRL B-65463T=DSM 104389T).