Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manti Guha is active.

Publication


Featured researches published by Manti Guha.


Mitochondrion | 2013

Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics.

Manti Guha; Narayan G. Avadhani

Mitochondria play a central role not only in energy production but also in the integration of metabolic pathways as well as signals for apoptosis and autophagy. It is becoming increasingly apparent that mitochondria in mammalian cells play critical roles in the initiation and propagation of various signaling cascades. In particular, mitochondrial metabolic and respiratory states and status on mitochondrial genetic instability are communicated to the nucleus as an adaptive response through retrograde signaling. Each mammalian cell contains multiple copies of the mitochondrial genome (mtDNA). A reduction in mtDNA copy number has been reported in various human pathological conditions such as diabetes, obesity, neurodegenerative disorders, aging and cancer. Reduction in mtDNA copy number disrupts mitochondrial membrane potential (Δψm) resulting in dysfunctional mitochondria. Dysfunctional mitochondria trigger retrograde signaling and communicate their changing metabolic and functional state to the nucleus as an adaptive response resulting in an altered nuclear gene expression profile and altered cell physiology and morphology. In this review, we provide an overview of the various modes of mitochondrial retrograde signaling focusing particularly on the Ca(2+)/Calcineurin mediated retrograde signaling. We discuss the contribution of the key factors of the pathway such as Calcineurin, IGF1 receptor, Akt kinase and HnRNPA2 in the propagation of signaling and their role in modulating genetic and epigenetic changes favoring cellular reprogramming towards tumorigenesis.


Cell Reports | 2015

DNA-Damage-Induced Type I Interferon Promotes Senescence and Inhibits Stem Cell Function

Qiujing Yu; Yuliya V. Katlinskaya; Christopher J. Carbone; Bin Zhao; Kanstantsin V. Katlinski; Hui Zheng; Manti Guha; Ning Li; Qijun Chen; Ting Yang; Christopher J. Lengner; Roger A. Greenberg; F. Brad Johnson; Serge Y. Fuchs

Expression of type I interferons (IFNs) can be induced by DNA-damaging agents, but the mechanisms and significance of this regulation are not completely understood. We found that the transcription factor IRF3, activated in an ATM-IKKα/β-dependent manner, stimulates cell-autonomous IFN-β expression in response to double-stranded DNA breaks. Cells and tissues with accumulating DNA damage produce endogenous IFN-β and stimulate IFN signaling in vitro and in vivo. In turn, IFN acts to amplify DNA-damage responses, activate the p53 pathway, promote senescence, and inhibit stem cell function in response to telomere shortening. Inactivation of the IFN pathway abrogates the development of diverse progeric phenotypes and extends the lifespan of Terc knockout mice. These data identify DNA-damage-response-induced IFN signaling as a critical mechanism that links accumulating DNA damage with senescence and premature aging.


Oncogene | 2014

Mitochondrial retrograde signaling induces epithelial–mesenchymal transition and generates breast cancer stem cells

Manti Guha; S Srinivasan; G Ruthel; A K Kashina; R P Carstens; A Mendoza; C Khanna; T Van Winkle; Narayan G. Avadhani

Metastatic breast tumors undergo epithelial-to-mesenchymal transition (EMT), which renders them resistant to therapies targeted to the primary cancers. The mechanistic link between mtDNA (mitochondrial DNA) reduction, often seen in breast cancer patients, and EMT is unknown. We demonstrate that reducing mtDNA content in human mammary epithelial cells (hMECs) activates Calcineurin (Cn)-dependent mitochondrial retrograde signaling pathway, which induces EMT-like reprogramming to fibroblastic morphology, loss of cell polarity, contact inhibition and acquired migratory and invasive phenotype. Notably, mtDNA reduction generates breast cancer stem cells. In addition to retrograde signaling markers, there is an induction of mesenchymal genes but loss of epithelial markers in these cells. The changes are reversed by either restoring the mtDNA content or knockdown of CnAα mRNA, indicating the causal role of retrograde signaling in EMT. Our results point to a new therapeutic strategy for metastatic breast cancers targeted to the mitochondrial retrograde signaling pathway for abrogating EMT and attenuating cancer stem cells, which evade conventional therapies. We report a novel regulatory mechanism by which low mtDNA content generates EMT and cancer stem cells in hMECs.


Journal of Clinical Investigation | 2016

Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors

Gao Zhang; Dennie T. Frederick; Lawrence Wu; Zhi Wei; Clemens Krepler; Satish Srinivasan; Young Chan Chae; Xiaowei Xu; Harry Choi; Elaida Dimwamwa; Omotayo Ope; Batool Shannan; Devraj Basu; Dongmei Zhang; Manti Guha; Min Xiao; Sergio Randell; Katrin Sproesser; Wei Xu; Jephrey Y. Liu; Giorgos C. Karakousis; Lynn M. Schuchter; Tara C. Gangadhar; Ravi K. Amaravadi; Mengnan Gu; Caiyue Xu; Abheek Ghosh; Weiting Xu; Tian Tian; Jie Zhang

Targeting multiple components of the MAPK pathway can prolong the survival of patients with BRAFV600E melanoma. This approach is not curative, as some BRAF-mutated melanoma cells are intrinsically resistant to MAPK inhibitors (MAPKi). At the systemic level, our knowledge of how signaling pathways underlie drug resistance needs to be further expanded. Here, we have shown that intrinsically resistant BRAF-mutated melanoma cells with a low basal level of mitochondrial biogenesis depend on this process to survive MAPKi. Intrinsically resistant cells exploited an integrated stress response, exhibited an increase in mitochondrial DNA content, and required oxidative phosphorylation to meet their bioenergetic needs. We determined that intrinsically resistant cells rely on the genes encoding TFAM, which controls mitochondrial genome replication and transcription, and TRAP1, which regulates mitochondrial protein folding. Therefore, we targeted mitochondrial biogenesis with a mitochondrium-targeted, small-molecule HSP90 inhibitor (Gamitrinib), which eradicated intrinsically resistant cells and augmented the efficacy of MAPKi by inducing mitochondrial dysfunction and inhibiting tumor bioenergetics. A subset of tumor biopsies from patients with disease progression despite MAPKi treatment showed increased mitochondrial biogenesis and tumor bioenergetics. A subset of acquired drug-resistant melanoma cell lines was sensitive to Gamitrinib. Our study establishes mitochondrial biogenesis, coupled with aberrant tumor bioenergetics, as a potential therapy escape mechanism and paves the way for a rationale-based combinatorial strategy to improve the efficacy of MAPKi.


Journal of Biological Chemistry | 2008

A Distinctive Physiological Role for IκBβ in the Propagation of Mitochondrial Respiratory Stress Signaling

Gopa Biswas; Weigang Tang; Neal Sondheimer; Manti Guha; Seema Bansal; Narayan G. Avadhani

The NFκBs regulate an array of physiological and pathological processes, including propagation of mitochondrial respiratory stress signaling in mammalian cells. We showed previously that mitochondrial stress activates NFκB using a novel calcineurin-requiring pathway that is different from canonical or non-canonical pathways. This study shows that IκBβ is essential for the propagation of mitochondrial stress signaling. Knock down of IκBβ, but not IκBα, mRNA reduced the mitochondrial stress-mediated activation and nuclear translocation of cRel:p50, inhibiting expression of nuclear target genes RyR1 and cathepsin L. IκBβ mRNA knock down also reduced resistance to staurosporine-induced apoptosis and decreased in vitro invasiveness. Induced receptor switching to insulin-like growth factor-1 receptor and increased glucose uptake are hallmarks of mitochondrial stress. IκBβ mRNA knock down selectively abrogated the receptor switch and altered tubulin cytoskeletal organization. These results show that mitochondrial stress signaling uses an IκBβ-initiated NFκB pathway that is distinct from the other known NFκB pathways. Furthermore, our results demonstrate the distinctive physiological roles of the two inhibitory proteins IκBβ and IκBα.


Journal of Biological Chemistry | 2007

Activation of a novel calcineurin-mediated insulin-like growth factor-1 receptor pathway, altered metabolism, and tumor cell invasion in cells subjected to mitochondrial respiratory stress.

Manti Guha; Satish Srinivasan; Gopa Biswas; Narayan G. Avadhani

We have previously shown that disruption of mitochondrial membrane potential by depletion of mitochondrial DNA (mtDNA) or treatment with a mitochondrial ionophore, carbonyl cyanide m-chlorophenylhydrazone, initiates a stress signaling, which causes resistance to apoptosis, and induces invasive behavior in C2C12 myocytes and A549 cells. In the present study we show that calcineurin (Cn), activated as part of this stress signaling, plays an important role in increased glucose uptake and glycolysis. Here we report that, although both insulin and insulin-like growth factor-1 receptor levels (IR and IGF1R, respectively) are increased in response to mitochondrial stress, autophosphorylation of IGF1R was selectively increased suggesting a shift in receptor pathways. Using an approach with FK506, an inhibitor of Cn, and mRNA silencing by small interference RNA we show that mitochondrial stress-activated Cn is critical for increased GLUT 4 and IGF1R expression and activation. The importance of the IGF1R pathway in cell survival under mitochondrial stress is demonstrated by increased apoptosis either by IGF1R mRNA silencing or by treatment with IGF1R inhibitors (AG1024 and picropodophyllin). This study describes a novel mechanism of mitochondrial stress-induced metabolic shift involving Cn with implications in resistance to apoptosis and tumor proliferation.


Molecular Biology of the Cell | 2010

Activation of Akt Is Essential for the Propagation of Mitochondrial Respiratory Stress Signaling and Activation of the Transcriptional Coactivator Heterogeneous Ribonucleoprotein A2

Manti Guha; Ji-Kang Fang; Robert Monks; Morris J. Birnbaum; Narayan G. Avadhani

This article shows that mitochondrial respiratory dysfunction activates a stress signaling that induces Akt1 activation. Akt1 activation occurs through calcineurin-mediated IGF1R/PI3-K pathway. Akt1-mediated phosphorylation of hnRNPA2 is a key requirement for the propagation of stress signaling and activation of nuclear target genes.


Molecular Biology of the Cell | 2009

Heterogeneous Nuclear Ribonucleoprotein A2 Is a Common Transcriptional Coactivator in the Nuclear Transcription Response to Mitochondrial Respiratory Stress

Manti Guha; Hua Pan; Ji-Kang Fang; Narayan G. Avadhani

Mitochondrial dysfunction and altered transmembrane potential initiate a mitochondrial respiratory stress response, also known as mitochondrial retrograde response, in a wide spectrum of cells. The mitochondrial stress response activates calcineurin, which regulates transcription factors, including a new nuclear factor-kappaB (NF-kappaB) pathway, different from the canonical and noncanonical pathways. In this study using a combination of small interfering RNA-mediated mRNA knock down, transcriptional analysis, and chromatin immunoprecipitation, we report a common mechanism for the regulation of previously established stress response genes Cathepsin L, RyR1, and Glut4. Stress-regulated transcription involves the cooperative interplay between NF-kappaB (cRel: p50), C/EBPdelta, cAMP response element-binding protein, and nuclear factor of activated T cells. We show that the functional synergy of these factors requires the stress-activated heterogeneous nuclear ribonucleoprotein (hnRNP) A2 as a coactivator. HnRNP A2 associates with the enhanceosome, mostly through protein-protein interactions with DNA-bound factors. Silencing of hnRNP A2 as well as other DNA binding signature factors prevents stress-induced transcriptional activation and reverses the invasiveness of mitochondrial DNA-depleted C2C12 cells. Induction of mitochondrial stress signaling by electron transfer chain inhibitors also involved hnRNPA2 activation. We describe a common mechanism of mitochondrial respiratory stress-induced activation of nuclear target genes that involves hnRNP A2 as a transcription coactivator.


Oncogene | 2015

Mitochondrial SOD2 regulates epithelial–mesenchymal transition and cell populations defined by differential CD44 expression

Hideaki Kinugasa; Kelly A. Whelan; Koji Tanaka; M Natsuizaka; A Long; A Guo; S Chang; Shingo Kagawa; Satish Srinivasan; Manti Guha; K Yamamoto; D.K. St. Clair; Narayan G. Avadhani; J A Diehl; Hiroshi Nakagawa

Epithelial–mesenchymal transition (EMT) promotes cancer cell invasion, metastasis and treatment failure. EMT may be activated in cancer cells by reactive oxygen species (ROS). EMT may promote conversion of a subset of cancer cells from a CD44low-CD24high (CD44L) epithelial phenotype to a CD44high-CD24−/low (CD44H) mesenchymal phenotype, the latter associated with increased malignant properties of cancer cells. ROS are required for cells undergoing EMT, although excessive ROS may induce cell death or senescence; however, little is known as to how cellular antioxidant capabilities may be regulated during EMT. Mitochondrial superoxide dismutase 2 (SOD2) is frequently overexpressed in oral and esophageal cancers. Here, we investigate mechanisms of SOD2 transcriptional regulation in EMT, as well as the functional role of this antioxidant in EMT. Using well-characterized genetically engineered oral and esophageal human epithelial cell lines coupled with RNA interference and flow cytometric approaches, we find that transforming growth factor (TGF)-β stimulates EMT, resulting in conversion of CD44L to CD44H cells, the latter of which display SOD2 upregulation. SOD2 induction in transformed keratinocytes was concurrent with suppression of TGF-β-mediated induction of both ROS and senescence. SOD2 gene expression appeared to be transcriptionally regulated by NF-κB and ZEB2, but not ZEB1. Moreover, SOD2-mediated antioxidant activity may restrict conversion of CD44L cells to CD44H cells at the early stages of EMT. These data provide novel mechanistic insights into the dynamic expression of SOD2 during EMT. In addition, we delineate a functional role for SOD2 in EMT via the influence of this antioxidant upon distinct CD44L and CD44H subsets of cancer cells that have been implicated in oral and esophageal tumor biology.


Biochimica et Biophysica Acta | 2010

Role of calcineurin, hnRNPA2 and Akt in mitochondrial respiratory stress-mediated transcription activation of nuclear gene targets.

Manti Guha; Weigang Tang; Neal Sondheimer; Narayan G. Avadhani

Pathophysiological conditions causing mitochondrial dysfunction and altered transmembrane potential (psim) initiate a mitochondrial respiratory stress response, also known as mitochondrial retrograde response, in a variety of mammalian cells. An increase in the cytosolic Ca2+ [Ca2+]c as part of this signaling cascade activates Ca2+ responsive phosphatase, calcineurin (Cn). Activation of IGF1R accompanied by increased glycolysis, invasiveness, and resistance to apoptosis is a phenotypic hallmark of C2C12 skeletal muscle cells subjected to this stress. The signaling is associated with activation and increased nuclear translocation of a number of transcription factors including a novel NFkappaB (cRel:p50) pathway, NFAT, CREB and C/EBPdelta. This culminates in the upregulation of a number of nuclear genes including Cathepsin L, RyR1, Glut4 and Akt1. We observed that stress regulated transcription activation of nuclear genes involves a cooperative interplay between NFkappaB (cRel:p50), C/EBPdelta, CREB, and NFAT. Our results show that the functional synergy of these factors requires the stress-activated heterogeneous nuclear ribonucleoprotein, hnRNPA2 as a transcriptional coactivator. We report here that mitochondrial stress leads to induced expression and activation of serine threonine kinase Akt1. Interestingly, we observe that Akt1 phosphorylates hnRNPA2 under mitochondrial stress conditions, which is a crucial step for the recruitment of this coactivator to the stress target promoters and culmination in mitochondrial stress-mediated transcription activation of target genes. We propose that mitochondrial stress plays an important role in tumor progression and emergence of invasive phenotypes.

Collaboration


Dive into the Manti Guha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satish Srinivasan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Nakagawa

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gopa Biswas

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Anil K. Rustgi

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Dawei W. Dong

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Ji-Kang Fang

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge