Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuchair Ebadi is active.

Publication


Featured researches published by Manuchair Ebadi.


Progress in Neurobiology | 1996

Oxidative stress and antioxidant therapy in Parkinson's disease

Manuchair Ebadi; Shashi Kumar Srinivasan; Mayur D. Baxi

Parkinsons disease, known also as striatal dopamine deficiency syndrome, is a degenerative disorder of the central nervous system characterized by akinesia, muscular rigidity, tremor at rest, and postural abnormalities. In early stages of parkinsonism, there appears to be a compensatory increase in the number of dopamine receptors to accommodate the initial loss of dopamine neurons. As the disease progresses, the number of dopamine receptors decreases, apparently due to the concomitant degeneration of dopamine target sites on striatal neurons. The loss of dopaminergic neurons in Parkinsons disease results in enhanced metabolism of dopamine, augmenting the formation of H2O2, thus leading to generation of highly neurotoxic hydroxyl radicals (OH.). The generation of free radicals can also be produced by 6-hydroxydopamine or MPTP which destroys striatal dopaminergic neurons causing parkinsonism in experimental animals as well as human beings. Studies of the substantia nigra after death in Parkinsons disease have suggested the presence of oxidative stress and depletion of reduced glutathione; a high level of total iron with reduced level of ferritin; and deficiency of mitochondrial complex I. New approaches designed to attenuate the effects of oxidative stress and to provide neuroprotection of striatal dopaminergic neurons in Parkinsons disease include blocking dopamine transporter by mazindol, blocking NMDA receptors by dizocilpine maleate, enhancing the survival of neurons by giving brain-derived neurotrophic factors, providing antioxidants such as vitamin E, or inhibiting monoamine oxidase B (MAO-B) by selegiline. Among all of these experimental therapeutic refinements, the use of selegiline has been most successful in that it has been shown that selegiline may have a neurotrophic factor-like action rescuing striatal neurons and prolonging the survival of patients with Parkinsons disease.


Neurochemistry International | 1997

Neurotrophins and their receptors in nerve injury and repair.

Manuchair Ebadi; Rifaat Bashir; M.L Heidrick; F.M Hamada; E El Refaey; A Hamed; G Helal; M.D Baxi; Cerutis Dr; N.K Lassi

Cytokines are a heterogenous group of polypeptide mediators that have been associated with activation of numerous functions, including the immune system and inflammatory responses. The cytokine families include, but are not limited to, interleukins (IL-I alpha, IL-I beta, ILIra and IL-2-IL-15), chemokines (IL-8/ NAP-I, NAP-2, MIP-I alpha and beta, MCAF/MCP-1, MGSA and RANTES), tumor necrosis factors (TNF-alpha and TNF-beta), interferons (INF-alpha, beta and gamma), colony stimulating factors (G-CSF, M-CSF, GM-CSF, IL-3 and some of the other ILs), growth factors (EGF, FGF, PDGF, TGF alpha, TGF beta and ECGF), neuropoietins (LIF, CNTF, OM and IL-6), and neurotrophins (BDNF, NGF, NT-3-NT-6 and GDNF). The neurotrophins represent a family of survival and differentiation factors that exert profound effects in the central and peripheral nervous system (PNS). The neurotrophins are currently under investigation as therapeutic agents for the treatment of neurodegenerative disorders and nerve injury either individually or in combination with other trophic factors such as ciliary neurotrophic factor (CNTF) or fibroblast growth factor (FGF). Responsiveness of neurons to a given neurotrophin is governed by the expression of two classes of cell surface receptor. For nerve growth factor (NGF), these are p75NTR (p75) and p140trk (referred to as trk or trkA), which binds both BDNF and neurotrophin (NT)-4/5, and trkC receptor, which binds only NT-3. After binding ligand, the neurotrophin-receptor complex is internalized and retrogradely transported in the axon to the soma. Both receptors undergo ligand-induced dimerization, which activates multiple signal transduction pathways. These include the ras-dependent pathway utilized by trk to mediate neurotrophin effects such as survival and differentiation. Indeed, cellular diversity in the nervous system evolves from the concerted processes of cell proliferation, differentiation, migration, survival, and synapse formation. Neural adhesion and extracellular matrix molecules have been shown to play crucial roles in axonal migration, guidance, and growth cone targeting. Proinflammatory cytokines, released by activated macrophages and monocytes during infection, can act on neural targets that control thermogenesis, behavior, and mood. In addition to induction of fever, cytokines induce other biological functions associated with the acute phase response, including hypophagia and sleep. Cytokine production has been detected within the central nervous system as a result of brain injury, following stab wound to the brain, during viral and bacterial infections (AIDS and meningitis), and in neurodegenerative processes (multiple sclerosis and Alzheimers disease). Novel cytokine therapies, such as anticytokine antibodies or specific receptor antagonists acting on the cytokine network may provide an optimistic feature for treatment of multiple sclerosis and other diseases in which cytokines have been implicated.


Antioxidants & Redox Signaling | 2003

Peroxynitrite and Mitochondrial Dysfunction in the Pathogenesis of Parkinson's Disease

Manuchair Ebadi; Sushil Sharma

Nitric oxide (NO), in excess, behaves as a cytotoxic substance mediating the pathological processes that cause neurodegeneration. The NO-induced dopaminergic cell loss causing Parkinsons disease (PD) has been postulated to include the following: an inhibition of cytochrome oxidase, ribonucleotide reductase, mitochondrial complexes I, II, and IV in the respiratory chain, superoxide dismutase, glyceraldehyde-3-phosphate dehydrogenase; activation or initiation of DNA strand breakage, poly(ADP-ribose) synthase, lipid peroxidation, and protein oxidation; release of iron; and increased generation of toxic radicals such as hydroxyl radicals and peroxynitrite. NO is formed by the conversion of L-arginine to L-citrulline by NO synthase (NOS). At least three NOS isoforms have been identified by molecular cloning and biochemical studies: a neuronal NOS or type 1 NOS (nNOS), an immunologic NOS or type 2 NOS (iNOS), and an endothelial NOS or type 3 NOS (eNOS). The enzymatic activities of eNOS or nNOS are induced by phosphorylation triggered by Ca(2+) entering cells and binding to calmodulin. In contrast, the regulation of iNOS seems to depend on de novo synthesis of the enzyme in response to a variety of cytokines, such as interferon-gamma and lipopolysaccharide. The evidence that NO is associated with neurotoxic processes underlying PD comes from studies using experimental models of this disease NOS inhibitors can prevent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Furthermore, NO fosters dopamine depletion, and the said neurotoxicity is averted by nNOS inhibitors such as 7-nitroindazole working on tyrosine hydroxylase-immunoreactive neurons in substantia nigra pars compacta. Moreover, mutant mice lacking the nNOS gene are more resistant to MPTP neurotoxicity when compared with wild-type littermates. Selegiline, an irreversible inhibitor of monoamine oxidase B, is used in PD as a dopaminergic function-enhancing substance. Selegiline and its metabolite, desmethylselegiline, reduce apoptosis by altering the expression of a number of genes, for instance, superoxide dismutase, Bcl-2, Bcl-xl, NOS, c-Jun, and nicotinamide adenine nucleotide dehydrogenase. The selegiline-induced antiapoptotic activity is associated with prevention of a progressive reduction of mitochondrial membrane potential in preapoptotic neurons. As apoptosis is critical to the progression of neurodegenerative disease, including PD, selegiline or selegiline-like compounds to be discovered in the future may be efficacious in treating PD.


Neurosignals | 2001

Ubiquinone (Coenzyme Q10) and Mitochondria in Oxidative Stress of Parkinson’s Disease

Manuchair Ebadi; Piyarat Govitrapong; Sushil Sharma; Dhanasekaran Muralikrishnan; Shaik Shavali; Pellett Lj; R. Schafer; C. B. Albano; Josh Eken

Parkinson’s disease is the second most common neurodegenerative disorder after Alzheimer’s disease affecting approximately1% of the population older than 50 years. There is a worldwide increase in disease prevalence due to the increasing age of human populations. A definitive neuropathological diagnosis of Parkinson’s disease requires loss of dopaminergic neurons in the substantia nigra and related brain stem nuclei, and the presence of Lewy bodies in remaining nerve cells. The contribution of genetic factors to the pathogenesis of Parkinson’s disease is increasingly being recognized. A point mutation which is sufficient to cause a rare autosomal dominant form of the disorder has been recently identified in the α-synuclein gene on chromosome 4 in the much more common sporadic, or ‘idiopathic’ form of Parkinson’s disease, and a defect of complex I of the mitochondrial respiratory chain was confirmed at the biochemical level. Disease specificity of this defect has been demonstrated for the parkinsonian substantia nigra. These findings and the observation that the neurotoxin 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP), which causes a Parkinson-like syndrome in humans, acts via inhibition of complex I have triggered research interest in the mitochondrial genetics of Parkinson’s disease. Oxidative phosphorylation consists of five protein-lipid enzyme complexes located in the mitochondrial inner membrane that contain flavins (FMN, FAD), quinoid compounds (coenzyme Q10, CoQ10) and transition metal compounds (iron-sulfur clusters, hemes, protein-bound copper). These enzymes are designated complex I (NADH:ubiquinone oxidoreductase, EC 1.6. 5.3), complex II (succinate:ubiquinone oxidoreductase, EC 1.3.5.1), complex III (ubiquinol:ferrocytochrome c oxidoreductase, EC 1.10.2.2), complex IV (ferrocytochrome c:oxygen oxidoreductase or cytochrome c oxidase, EC 1.9.3.1), and complex V (ATP synthase, EC 3.6.1.34). A defect in mitochondrial oxidative phosphorylation, in terms of a reduction in the activity of NADH CoQ reductase (complex I) has been reported in the striatum of patients with Parkinson’s disease. The reduction in the activity of complex I is found in the substantia nigra, but not in other areas of the brain, such as globus pallidus or cerebral cortex. Therefore, the specificity of mitochondrial impairment may play a role in the degeneration of nigrostriatal dopaminergic neurons. This view is supported by the fact that MPTP generating 1-methyl-4-phenylpyridine (MPP+) destroys dopaminergic neurons in the substantia nigra. Although the serum levels of CoQ10 is normal in patients with Parkinson’s disease, CoQ10 is able to attenuate the MPTP-induced loss of striatal dopaminergic neurons.


Neurochemistry International | 2013

Biomarkers in Parkinson’s disease (recent update)

Sushil Sharma; Carolyn Seungyoun Moon; Azza Khogali; Ali Haidous; Anthony Chabenne; Comfort Ojo; Miriana Jelebinkov; Yousef Kurdi; Manuchair Ebadi

Parkinsons disease (PD) is the second most common neurodegenerative disorder mostly affecting the aging population over sixty. Cardinal symptoms including, tremors, muscle rigidity, drooping posture, drooling, walking difficulty, and autonomic symptoms appear when a significant number of nigrostriatal dopaminergic neurons are already destroyed. Hence we need early, sensitive, specific, and economical peripheral and/or central biomarker(s) for the differential diagnosis, prognosis, and treatment of PD. These can be classified as clinical, biochemical, genetic, proteomic, and neuroimaging biomarkers. Novel discoveries of genetic as well as nongenetic biomarkers may be utilized for the personalized treatment of PD during preclinical (premotor) and clinical (motor) stages. Premotor biomarkers including hyper-echogenicity of substantia nigra, olfactory and autonomic dysfunction, depression, hyposmia, deafness, REM sleep disorder, and impulsive behavior may be noticed during preclinical stage. Neuroimaging biomarkers (PET, SPECT, MRI), and neuropsychological deficits can facilitate differential diagnosis. Single-cell profiling of dopaminergic neurons has identified pyridoxal kinase and lysosomal ATPase as biomarker genes for PD prognosis. Promising biomarkers include: fluid biomarkers, neuromelanin antibodies, pathological forms of α-Syn, DJ-1, amyloid β and tau in the CSF, patterns of gene expression, metabolomics, urate, as well as protein profiling in the blood and CSF samples. Reduced brain regional N-acetyl-aspartate is a biomarker for the in vivo assessment of neuronal loss using magnetic resonance spectroscopy and T2 relaxation time with MRI. To confirm PD diagnosis, the PET biomarkers include [(18)F]-DOPA for estimating dopaminergic neurotransmission, [(18)F]dG for mitochondrial bioenergetics, [(18)F]BMS for mitochondrial complex-1, [(11)C](R)-PK11195 for microglial activation, SPECT imaging with (123)Iflupane and βCIT for dopamine transporter, and urinary salsolinol and 8-hydroxy, 2-deoxyguanosine for neuronal loss. This brief review describes the merits and limitations of recently discovered biomarkers and proposes coenzyme Q10, mitochondrial ubiquinone-NADH oxidoreductase, melatonin, α-synculein index, Charnoly body, and metallothioneins as novel biomarkers to confirm PD diagnosis for early and effective treatment of PD.


Neurochemistry International | 1996

The antioxidant properties of zinc and metallothionein

Manuchair Ebadi; M.P Leuschen; H El Refaey; F.M Hamada; Patricia Rojas

Support for the hypothesis that metallothionein isoforms participate in intracellular defense against reactive oxygen and nitrogen species is derived from observations that substances causing oxidative stress, such as ethanol and iron, and agents involved in inflammatory processes, such as interleukin-1 and tumour necrosis factor alpha, induce the synthesis of metallothionein. Moreover, animals deficient in metallothionein isoforms exhibit greater susceptibility to oxidative stress; metallothionein genes are transcriptionally activated in cells and tissues during oxidative stress; and over expression of metallothionein reduces the sensitivity of cells and tissues to free radical-induced injury. In this study, we have shown that the i.c.v. administration of ZnSO4 increases the synthesis of metallothionein I mRNA and metallothionein II mRNA. In addition, the i.c.v. administration of ZnSO4 enhances the concentration of zinc and in direct proportion the synthesis of metallothionein mRNAs. Agents known to generate free radicals and to cause oxidative stress such as 6-hydroxydopamine, iron, hydrogen peroxide, and various alcohols lead to induction of metallothionein in the hippocampal neurons in primary culture and in Chang liver cells in culture. In view of the fact that zinc and 6-hydroxydopamine induce the level of brain metallothionein and its mRNAs and zinc and metallothionein concentrations vary in different regions of the brain, it is postulated that metallothionein may play a major role in nullifying the iron-mediated generation of free radicals and in protecting against oxidative stress in the brain.


Neuroscience Letters | 2008

Mitochondrial localization of alpha-synuclein protein in alpha-synuclein overexpressing cells.

Shaik Shavali; Holly M. Brown-Borg; Manuchair Ebadi; James E. Porter

Alpha-synuclein (alpha-syn) is implicated in the pathogenesis of Parkinsons disease (PD). Mutations in alpha-syn gene or alpha-syn locus (SNCA) triplication are associated with mitochondrial abnormalities and early onset of familial PD. The goals of the present study were to examine whether alpha-syn is localized in the mitochondria of alpha-syn overexpressing cells (HEK-syn cells); and whether alpha-syn overexpression causes cells to be more vulnerable to mitochondrial toxin, rotenone. Western blotting and confocal microscopy techniques were employed to assess localization of alpha-syn in the mitochondria of HEK-293 cells that were stably transfected with human wild-type alpha-syn. The results demonstrated that the mitochondrial fractions that were isolated from HEK-syn cells showed the presence of alpha-syn, whereas, no alpha-syn was detected in the mitochondrial fractions of control HEK cells. The mitochondria of HEK-syn cells were found to be more susceptible to rotenone-induced toxicity when compared to control HEK cells. The intracellular ATP levels were significantly decreased in HEK-syn cells in response to sub toxic concentrations of rotenone. These results suggest that under overexpression conditions, alpha-syn may translocate to mitochondria and cause enhanced toxicity in response to sub toxic concentrations of mitochondrial toxins. This study has implications to the pathogenesis of familial PD where alpha-syn overexpression is mainly involved.


Neurochemical Research | 1982

The selective inhibition of hippocampal glutamic acid decarboxylase in zinc-induced epileptic seizures

Masatoshi Itoh; Manuchair Ebadi

The intracerebroventricular administration of Zn2+ (0.3 μmol/10 μl) causes epileptic seizures characterized by running fits, jumping, vocalization, fasiculation of facial muscles, myoclonic movements of the limbs and tonic-clonic convulsions. These episodes are blocked or reversed by γ-aminobutyric acid (0.4 μmol/10 μl). When assayed under conditions where pyridoxal phosphate was not added, the activity of glutamic acid decarboxylase decreased significantly in hippocampus from 18.9 to 15.3 and 9.7 μmol14CO2 formed/gram proteins/20 min, 15 and 30 min following administration of Zn2+. The inhibition of glutamic acid decarboxylase by Zn2+ was selective occurring only in hippocampus and not in the hypothalamus, amygdala, caudate or thalamus. The inhibition of glutamic acid decarboxylase was not due to a reduction in the concentration of endogenous pyridoxal phosphate which remained unaltered in hippocampus following Zn2+ administration.


Brain Research Bulletin | 2005

Melatonin exerts its analgesic actions not by binding to opioid receptor subtypes but by increasing the release of β-endorphin an endogenous opioid

Shaik Shavali; Begonia Y Ho; Piyarat Govitrapong; Saiphon Sawlom; Amornpan Ajjimaporn; Sirirat Klongpanichapak; Manuchair Ebadi

The occurrence of systematic diurnal variations in pain thresholds has been demonstrated in human. Salivary melatonin levels change following acute pain when other factors that could explain the change have been removed or controlled. Melatonin-induced analgesia is blocked by naloxone or pinealectomy. By using selective radioligands [3H]-DAMGO, [3H]-DPDPE, [3-U69593, and 3H]-nociceptin, we have shown that the bovine pinealocytes contain delta and mu, but not kappa or ORL1 opioid receptor subtypes. In the present study, by using melatonin receptor agonists (6-chloromelatonin or 2-iodo-N-butanoyl-5-methoxytryptamine) or melatonin receptor antagonist (2-phenylmelatonin), we have shown that these agents do not compete with opioid receptor subtypes. However, we observed a time-dependent release of beta-endorphin an endogenous opioid peptide, by melatonin from mouse pituitary cells in culture. Hence, it is suggested that melatonin exerts its analgesic actions not by binding to opioid receptor subtypes but by binding to its own receptors and increasing the release of beta-endorphin.


Journal of Pineal Research | 1998

Pineal opioid receptors and analgesic action of melatonin

Manuchair Ebadi; Piyarat Govitrapong; Pansiri Phansuwan-Pujito; Nelson F; Russel J. Reiter

Abstract: Physicians have noted since antiquity that their patients complained of less pain and required fewer analgesics at night times. In most species, including the humans, the circulating levels of melatonin, a substance with analgesic and hypnotic properties, exhibit a pronounced circadian rhythm with serum levels being high at night and very low during day times. Moreover, melatonin exhibits maximal analgesic effects at night, pinealectomy abolishes the analgesic effects of melatonin, and mu opioid receptor antagonists disrupt the day‐night rhythm of nociception. It is believed that melatonin, with its sedative and analgesic effects, is capable of providing a pain free sleep so that the body may recuperate and restore itself to function again at its peak capacity. Moreover, in conditions when pain is associated with extensive tissue injury, melatonins ability to scavenge free radicals and abort oxidative stress is yet another beneficial effect to be realized. Since melatonin may behave as a mixed opioid receptor agonist‐antagonist, it is doubtful that a physician simply could potentiate the analgesic efficacy of narcotics such as morphine by coadministering melatonin. Therefore, future research may synthesize highly efficacious melatonin analogues capable of providing maximum analgesia and hopefully being devoid of addiction liability now associated with currently available narcotics.

Collaboration


Dive into the Manuchair Ebadi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sushil Sharma

Saint James School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Shaik Shavali

University of North Dakota

View shared research outputs
Top Co-Authors

Avatar

Ronald F. Pfeiffer

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. C. Murrin

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge