Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel Alejandro Merlo is active.

Publication


Featured researches published by Manuel Alejandro Merlo.


Genetica | 2010

Chromosomal mapping of the major and minor ribosomal genes, (GATA)n and U2 snRNA gene by double-colour FISH in species of the Batrachoididae family

María Úbeda-Manzanaro; Manuel Alejandro Merlo; José Luis Palazón; Ismael Cross; Carmen Sarasquete; Laureana Rebordinos

In the present study dual-colour fluorescence in situ hybridization (FISH) was performed to study the chromosomal distribution of 18S and 5S rDNAs, (GATA)n and 5S rDNA, and U2 snRNA and 18S rDNA in four species of Batrachoididae family: Amphichthys cryptocentrus, Batrachoides manglae, Porichthys plectrodon and Thalassophryne maculosa. The 18S rDNA signals were present in only one pair of chromosomes in all the four Batrachoididae species. The 5S rDNA was mapped on one pair of chromosomes, except in B. manglae, which showed a hybridization signal in two pairs. The two ribosomal genes are located on different chromosome pairs, except in A. cryptocentrus, in which they appear co-located. In all the cases, the (GATA)n probe produced disperse hybridization signals in all four species. The U2 snRNA signals appear very widely scattered in A. cryptocentrus, P. plectrodon, but show a degree of clustering in a specific chromosome pair in B. manglae. In T.maculosa, they are thinly dispersed and strong hybridization signals are observed co-located to the 18S rDNA-bearing chromosomes. Finally, a double-colour FISH with U2 snRNA and 5S rDNA probes was performed in B. manglae, and this showed that these genes were not co-located. These results have been compared with those from another Batrachoididae species, and evolutive processes of these species are discussed.


BMC Genomics | 2014

De novo assembly, characterization and functional annotation of Senegalese sole (Solea senegalensis) and common sole (Solea solea) transcriptomes: integration in a database and design of a microarray

Hicham Benzekri; Paula Armesto; Xavier Cousin; Mireia Rovira; Diego Crespo; Manuel Alejandro Merlo; David Mazurais; Rocío Bautista; Darío Guerrero-Fernández; Noe Fernandez-Pozo; Marian Ponce; Carlos Infante; José Zambonino; Sabine Nidelet; Marta Gut; Laureana Rebordinos; Josep V. Planas; Marie-Laure Bégout; M. Gonzalo Claros; Manuel Manchado

BackgroundSenegalese sole (Solea senegalensis) and common sole (S. solea) are two economically and evolutionary important flatfish species both in fisheries and aquaculture. Although some genomic resources and tools were recently described in these species, further sequencing efforts are required to establish a complete transcriptome, and to identify new molecular markers. Moreover, the comparative analysis of transcriptomes will be useful to understand flatfish evolution.ResultsA comprehensive characterization of the transcriptome for each species was carried out using a large set of Illumina data (more than 1,800 millions reads for each sole species) and 454 reads (more than 5 millions reads only in S. senegalensis), providing coverages ranging from 1,384x to 2,543x. After a de novo assembly, 45,063 and 38,402 different transcripts were obtained, comprising 18,738 and 22,683 full-length cDNAs in S. senegalensis and S. solea, respectively. A reference transcriptome with the longest unique transcripts and putative non-redundant new transcripts was established for each species. A subset of 11,953 reference transcripts was qualified as highly reliable orthologs (>97% identity) between both species. A small subset of putative species-specific, lineage-specific and flatfish-specific transcripts were also identified. Furthermore, transcriptome data permitted the identification of single nucleotide polymorphisms and simple-sequence repeats confirmed by FISH to be used in further genetic and expression studies. Moreover, evidences on the retention of crystallins crybb1, crybb1-like and crybb3 in the two species of soles are also presented. Transcriptome information was applied to the design of a microarray tool in S. senegalensis that was successfully tested and validated by qPCR. Finally, transcriptomic data were hosted and structured at SoleaDB.ConclusionsTranscriptomes and molecular markers identified in this study represent a valuable source for future genomic studies in these economically important species. Orthology analysis provided new clues regarding sole genome evolution indicating a divergent evolution of crystallins in flatfish. The design of a microarray and establishment of a reference transcriptome will be useful for large-scale gene expression studies. Moreover, the integration of transcriptomic data in the SoleaDB will facilitate the management of genomic information in these important species.


BMC Genetics | 2012

Genetic characterization of Plectorhinchus mediterraneus yields important clues about genome organization and evolution of multigene families

Manuel Alejandro Merlo; Tiziana Pacchiarini; Silvia Portela-Bens; Ismael Cross; Manuel Manchado; Laureana Rebordinos

BackgroundMolecular and cytogenetic markers are of great use for to fish characterization, identification, phylogenetics and evolution. Multigene families have proven to be good markers for a better understanding of the variability, organization and evolution of fish species. Three different tandemly-repeated gene families (45S rDNA, 5S rDNA and U2 snDNA) have been studied in Plectorhinchus mediterraneus (Teleostei: Haemulidae), at both molecular and cytogenetic level, to elucidate the taxonomy and evolution of these multigene families, as well as for comparative purposes with other species of the family.ResultsFour different types of 5S rDNA were obtained; two of them showed a high homology with that of Raja asterias, and the putative implication of a horizontal transfer event and its consequences for the organization and evolution of the 5S rDNA have been discussed. The other two types do not resemble any other species, but in one of them a putative tRNA-derived SINE was observed for the first time, which could have implications in the evolution of the 5S rDNA. The ITS-1 sequence was more related to a species of another different genus than to that of the same genus, therefore a revision of the Hamulidae family systematic has been proposed. In the analysis of the U2 snDNA, we were able to corroborate that U2 snDNA and U5 snDNA were linked in the same tandem array, and this has interest for tracing evolutionary lines. The karyotype of the species was composed of 2n = 48 acrocentric chromosomes, and each of the three multigene families were located in different chromosome pairs, thus providing three different chromosomal markers.ConclusionsNovel data can be extracted from the results: a putative event of horizontal transfer, a possible tRNA-derived SINE linked to one of the four 5S rDNA types characterized, and a linkage between U2 and U5 snDNA. In addition, a revision of the taxonomy of the Haemulidae family has been suggested, and three cytogenetic markers have been obtained. Some of these results have not been described before in any other fish species. New clues about the genome organization and evolution of the multigene families are offered in this study.


BMC Evolutionary Biology | 2012

Evidence for 5S rDNA horizontal transfer in the toadfish Halobatrachus didactylus (Schneider, 1801) based on the analysis of three multigene families.

Manuel Alejandro Merlo; Ismael Cross; José Luis Palazón; María Úbeda-Manzanaro; Carmen Sarasquete; Laureana Rebordinos

BackgroundThe Batrachoididae family is a group of marine teleosts that includes several species with more complicated physiological characteristics, such as their excretory, reproductive, cardiovascular and respiratory systems. Previous studies of the 5S rDNA gene family carried out in four species from the Western Atlantic showed two types of this gene in two species but only one in the other two, under processes of concerted evolution and birth-and-death evolution with purifying selection. Here we present results of the 5S rDNA and another two gene families in Halobatrachus didactylus, an Eastern Atlantic species, and draw evolutionary inferences regarding the gene families. In addition we have also mapped the genes on the chromosomes by two-colour fluorescence in situ hybridization (FISH).ResultsTwo types of 5S rDNA were observed, named type α and type β. Molecular analysis of the 5S rDNA indicates that H. didactylus does not share the non-transcribed spacer (NTS) sequences with four other species of the family; therefore, it must have evolved in isolation. Amplification with the type β specific primers amplified a specific band in 9 specimens of H. didactylus and two of Sparus aurata. Both types showed regulatory regions and a secondary structure which mark them as functional genes. However, the U2 snRNA gene and the ITS-1 sequence showed one electrophoretic band and with one type of sequence. The U2 snRNA sequence was the most variable of the three multigene families studied. Results from two-colour FISH showed no co-localization of the gene coding from three multigene families and provided the first map of the chromosomes of the species.ConclusionsA highly significant finding was observed in the analysis of the 5S rDNA, since two such distant species as H. didactylus and Sparus aurata share a 5S rDNA type. This 5S rDNA type has been detected in other species belonging to the Batrachoidiformes and Perciformes orders, but not in the Pleuronectiformes and Clupeiformes orders. Two hypotheses have been outlined: one is the possible vertical permanence of the shared type in some fish lineages, and the other is the possibility of a horizontal transference event between ancient species of the Perciformes and Batrachoidiformes orders. This finding opens a new perspective in fish evolution and in the knowledge of the dynamism of the 5S rDNA. Cytogenetic analysis allowed some evolutionary trends to be roughed out, such as the progressive change in the U2 snDNA and the organization of (GATA)n repeats, from dispersed to localized in one locus. The accumulation of (GATA)n repeats in one chromosome pair could be implicated in the evolution of a pair of proto-sex chromosomes. This possibility could situate H. didactylus as the most highly evolved of the Batrachoididae family in terms of sex chromosome biology.


Cytogenetic and Genome Research | 2013

A Preliminary Genetic Map in Solea senegalensis (Pleuronectiformes, Soleidae) Using BAC-FISH and Next-Generation Sequencing

A. García-Cegarra; Manuel Alejandro Merlo; Marian Ponce; Silvia Portela-Bens; Ismael Cross; Manuel Manchado; Laureana Rebordinos

This article presents the first physical mapping carried out in the Senegalese sole (Solea senegalensis), an important marine fish species of Southern Europe. Eight probes were designated to pick up genes of interest in aquaculture (candidate genes) from a bacterial artificial chromosome (BAC) library using a method of rapid screening based on a 4-dimension PCR. Seven known and 3 unknown clones were isolated and labeled. The 10 BAC clones were used as probes to map the karyotype of the species by fluorescence in situ hybridization (FISH). Nine out of the 10 clones were localized in only 1 chromosome pair, whereas the remaining one hybridized on 2 chromosome pairs. The 2-color FISH experiments showed colocation of 4 probes in 2 chromosome pairs. In addition, 2-color FISH was carried out both with 5S rDNA and the BAC containing the lysozyme gene published previously. This first genetic map of the Senegalese sole represents a starting point for future studies of the sole genome. In addition, 7 out of the 10 BAC clones were sequenced using next-generation sequencing, and bioinformatic characterization of the sequences was carried out. Hence the anchoring of the sequences to specific chromosomes or chromosome arms is now possible, leading to an initial scaffold of the Senegalese sole genome.


Zebrafish | 2017

Evolutionary Dynamics of rDNAs and U2 Small Nuclear DNAs in Triportheus (Characiformes, Triportheidae): High Variability and Particular Syntenic Organization

Cassia Fernanda Yano; Luiz Antonio Carlos Bertollo; Laureana Rebordinos; Manuel Alejandro Merlo; Thomas Liehr; Silvia Portela-Bens; Marcelo de Bello Cioffi

Multigene families correspond to a group of genes tandemly repeated, showing enormous diversity in both number of units and genomic organization. In fishes, unlike rDNAs that have been well explored in cytogenetic studies, U2 small nuclear RNA (snRNA) genes are poorly investigated concerning their chromosomal localization. All Triportheus species (Characiformes, Triportheidae) studied so far carry a ZZ/ZW sex chromosomes system, where the W chromosome contains a huge 18S rDNA cistron. In some species the syntenic organization of rDNAs on autosomes was also verified. To explore this particular organization, we performed three-color-fluorescence in situ hybridization using 5S, 18S rDNA, and U2 snRNA genes as probes in eight Triportheus species. This work represents the first one analyzing the chromosomal distribution of U2 snRNA genes in genomes of Triportheidae. The variability in number of rDNA clusters, and the divergent syntenies for these three multigene families, put in evidence their evolutionary dynamism, revealing a much more complex organization of these genes than previously supposed for closely related species. Our study also provides additional data on the accumulation of repetitive sequences in the sex-specific chromosome. Besides, the chromosomal organization of U2 snDNAs among fish species is also reviewed.


Gene | 2014

Expression profiling of the sex-related gene Dmrt1 in adults of the Lusitanian toadfish Halobatrachus didactylus (Bloch and Schneider, 1801)

María Úbeda-Manzanaro; Manuel Alejandro Merlo; Juan B. Ortiz-Delgado; Laureana Rebordinos; Carmen Sarasquete

Doublesex and mab-3 related transcription factor 1 (Dmrt1) gene is a widely conserved gene involved in sex determination and differentiation across phyla. To gain insights on Dmrt1 implication for fish gonad cell differentiation and gametogenesis development, its mRNA was isolated from testis and ovary from the Lusitanian toadfish (Halobatrachus didactylus). The cDNA from Dmrt1 was synthesized and cloned, whereas its quantitative and qualitative gene expression, as well as its protein immunolocalization, were analyzed. A main product of 1.38 kb, which encodes a protein of 295 aa, was reported, but other minority Dmrt1 products were also identified by RACE-PCR. This gene is predominantly expressed in testis (about 20 times more than in other organs or tissues), specially in spermatogonia, spermatocytes and spermatids, as well as in somatic Sertoli cells, indicating that Dmrt1 plays an important role in spermatogenesis. Although Dmrt1 transcripts also seem to be involved in oogenesis development, and it cannot be excluded that toadfish Dmrt1 could be functionally involved in other processes not related to sex.


Chromosoma | 2017

Integrated gene mapping and synteny studies give insights into the evolution of a sex proto-chromosome in Solea senegalensis

Silvia Portela-Bens; Manuel Alejandro Merlo; María Esther Rodríguez; Ismael Cross; Manuel Manchado; Nadezda Kosyakova; Thomas Liehr; Laureana Rebordinos

The evolution of genes related to sex and reproduction in fish shows high plasticity and, to date, the sex determination system has only been identified in a few species. Solea senegalensis has 42 chromosomes and an XX/XY chromosome system for sex determination, while related species show the ZZ/ZW system. Next-generation sequencing (NGS), multi-color fluorescence in situ hybridization (mFISH) techniques, and bioinformatics analysis have been carried out, with the objective of revealing new information about sex determination and reproduction in S. senegalensis. To that end, several bacterial artificial chromosome (BAC) clones that contain candidate genes involved in such processes (dmrt1, dmrt2, dmrt3, dmrt4, sox3, sox6, sox8, sox9, lh, cyp19a1a, amh, vasa, aqp3, and nanos3) were analyzed and compared with the same region in other related species. Synteny studies showed that the co-localization of dmrt1-dmrt2-drmt3 in the largest metacentric chromosome of S. senegalensis is coincident with that found in the Z chromosome of Cynoglossus semilaevis, which would potentially make this a sex proto-chromosome. Phylogenetic studies show the close proximity of S. senegalensis to Oryzias latipes, a species with an XX/XY system and a sex master gene. Comparative mapping provides evidence of the preferential association of these candidate genes in particular chromosome pairs. By using the NGS and mFISH techniques, it has been possible to obtain an integrated genetic map, which shows that 15 out of 21 chromosome pairs of S. senegalensis have at least one BAC clone. This result is important for distinguishing those chromosome pairs of S. senegalensis that are similar in shape and size. The mFISH analysis shows the following co-localizations in the same chromosomes: dmrt1-dmrt2-dmrt3, dmrt4-sox9-thrb, aqp3-sox8, cyp19a1a-fshb, igsf9b-sox3, and lysg-sox6.


Genome | 2017

Analysis of the histone cluster in Senegalese sole (Solea senegalensis): evidence for a divergent evolution of two canonical histone clusters

Manuel Alejandro Merlo; Roger Iziga; Silvia Portela-Bens; Ismael Cross; Nadezda Kosyakova; Thomas Liehr; Manuel Manchado; Laureana Rebordinos

The Senegalese sole (Solea senegalensis) is commercially very important and a priority species for aquaculture product diversification. The main histone cluster was identified within two BAC clones. However, two replacement histones (H1.0 and H3.3) were found in another BAC clone. Different types of canonical histones H2A and H2B were found within the same species for the first time. Phylogenetic analysis demonstrated that the different types of H1, H2A, and H2B histones were all more similar to each other than to canonical histones from other species. The canonical histone H3 of S. senegalensis differs from subtypes H3.1 and H3.2 in humans at the site of residue 96, where a serine is found instead of an alanine. This same polymorphism has been found only in Danio rerio. The karyotype of S. senegalensis comprises 21 pairs of chromosomes, distributed in 3 metacentric pairs, 2 submetacentric pairs, 4 subtelocentric pairs, and 12 acrocentric pairs. The two BAC clones that contain the clusters of canonical histones were both mapped on the largest metacentric pair, and mFISH analysis confirmed the co-location with the dmrt1 gene in that pair. Three chromosome markers have been identified which, in addition to those previously described, account for 18 chromosome pairs in S. senegalensis.


Genes & Genetic Systems | 2010

Analysis of three multigene families as useful tools in species characterization of two closely-related species, Dicentrarchus labrax, Dicentrarchus punctatus and their hybrids

Manuel Alejandro Merlo; Ismael Cross; Hicham Chairi; Manuel Manchado; Laureana Rebordinos

Collaboration


Dive into the Manuel Alejandro Merlo's collaboration.

Top Co-Authors

Avatar

Laureana Rebordinos

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmen Sarasquete

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

María Úbeda-Manzanaro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Laureana Rebordinos

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cassia Fernanda Yano

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge