Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel Alvarez-Guerra is active.

Publication


Featured researches published by Manuel Alvarez-Guerra.


Green Chemistry | 2015

Towards the electrochemical conversion of carbon dioxide into methanol

Jonathan Albo; Manuel Alvarez-Guerra; Pedro Castaño; Angel Irabien

Various strategies have been proposed to date in order to mitigate the concentration of CO2 in the atmosphere, such as the separation, storage, and utilization of this gas. Among the available technologies, the electrochemical valorisation of CO2 appears to be an innovative technology, in which electrical energy is supplied to establish a potential between two electrodes, allowing CO2 to be transformed into value-added chemicals under mild conditions. It provides a method to recycle CO2 (in a carbon neutral cycle) and, at the same time, a way to chemically store the excess of renewable energy from intermittent sources, thus reducing our dependence on fossil fuels. Among the useful products that can be obtained, methanol is particularly interesting as a platform chemical, and it has gained renewed and growing attention in the research community. Accomplishments to date in the electroreduction of CO2 to methanol have been encouraging, although substantial advances are still needed for it to become a profitable technology able to shift society to renewable energy sources. This review presents a unified discussion of the significant work that has been published in the field of electrocatalytic reduction of CO2 to methanol. It emphasizes the aspects related to process design at different levels: cathode materials, reaction media, design of electrochemical cells, as well as working conditions. It then extends the discussion to the important conclusions from different electrocatalytic routes, and recommendations for future directions to develop a catalytic system that will convert CO2 to methanol at high process efficiencies.


Green Chemistry | 2011

Design of ionic liquids: an ecotoxicity (Vibrio fischeri) discrimination approach

Manuel Alvarez-Guerra; Angel Irabien

Ionic liquids have attracted a lot of attention as potential replacements for conventional volatile organic solvents, although they may pose environmental risks to aquatic ecosystems that have to be assessed. There is strong interest in developing mathematical models to estimate the ecotoxicity of ionic liquids, minimising the experimental investigations and the consequent consumption of time and resources. This paper presents a new approach for estimating the ecotoxicity of ILs, based on the standardised assay with the bacterium Vibrio fischeri, by means of the application of Partial Least Squares-Discriminant Analysis (PLS-DA). The PLS-DA model developed makes it possible to discriminate ionic liquids, formed by combinations of 30 anions and 64 cations, on the basis of their expected toxicity with respect to conventional solvents that they may replace. The successful results obtained in the validation of the model reveal that this approach can be useful as a screening tool to easily aid, from the early stages of the process, the design of aquatic environmentally friendly ionic liquids. This approach may also be useful for the further development of predictive models based on other aquatic organisms, for which more data are expected to be available in the near future.


Environment International | 2008

Assessment of Self-Organizing Map artificial neural networks for the classification of sediment quality.

Manuel Alvarez-Guerra; Cristina González-Piñuela; A. Andrés; Berta Galán; Javier R. Viguri

The application of mathematical tools in initial steps of sediment quality assessment frameworks can be useful to provide an integrated interpretation of multiple measured variables. This study reveals that the Self-Organizing Map (SOM) artificial neural network can be an effective tool for the integration of multiple physical, chemical and ecotoxicological variables in order to classify different sites under study according to their similar sediment quality. Sediment samples from 40 sites of 3 estuaries of Cantabria (Spain) were classified with respect to 13 physical, chemical and toxicological variables using the SOM. Results obtained with the SOM, when compared to those of traditional multivariate statistical techniques commonly used in the field of sediment quality (principal component analysis (PCA) and hierarchical cluster analysis (HCA)), provided a more useful classification for further assessment steps. Especially, the powerful visualization tools of the SOM, which offer more information and in an easier way than HCA and PCA, facilitate the task of establishing an order of priority between the distinguished groups of sites depending on their need for further investigations or remediation actions in subsequent management steps.


Energy and Environmental Science | 2015

Ionic liquids in the electrochemical valorisation of CO2

Manuel Alvarez-Guerra; Jonathan Albo; Enrique Alvarez-Guerra; Angel Irabien

The development of electrochemical processes for using captured CO2 in the production of valuable compounds appears as an attractive alternative to recycle CO2 and, at the same time, to store electricity from intermittent renewable sources. Among the different innovative attempts that are being investigated to improve these processes, the application of ionic liquids (ILs) has received growing attention in recent years. This paper presents a unified discussion of the significant work that involves the utilisation of ILs for the valorisation of CO2 by means of electrochemical routes. We discuss studies in which CO2 is used as one of the reactants to electrosynthesise value-added products, among which dimethyl carbonate has been the focus of particular attention in the literature. Approaches based on the electrochemical reduction of CO2 to convert it into products without the use of other carbon-based reactants are also reviewed, highlighting the remarkable improvements that the use of ILs has allowed in the CO2 electroreduction to CO. The review emphasises on different aspects related to process design, including the nature of IL anions and cations that have been used, the working conditions, the electrocatalytic materials, the electrode configurations, or the design of electrochemical cells, as well as discussing the most relevant observations, results and figures of merit that the participation of ILs has allowed to achieve in these processes. Several conclusions are finally proposed to highlight crucial challenges and recommendations for future research in this area.


Environment International | 2009

A multicriteria-based methodology for site prioritisation in sediment management.

Manuel Alvarez-Guerra; Javier R. Viguri; Nikolaos Voulvoulis

Decision-making for sediment management is a complex task that incorporates the selections of areas for remediation and the assessment of options for any mitigation required. The application of Multicriteria Analysis (MCA) to rank different areas, according to their need for sediment management, provides a great opportunity for prioritisation, a first step in an integrated methodology that finally aims to assess and select suitable alternatives for managing the identified priority sites. This paper develops a methodology that starts with the delimitation of management units within areas of study, followed by the application of MCA methods that allows ranking of these management units, according to their need for remediation. This proposed process considers not only scientific evidence on sediment quality, but also other relevant aspects such as social and economic criteria associated with such decisions. This methodology is illustrated with its application to the case study area of the Bay of Santander, in northern Spain, highlighting some of the implications of utilising different MCA methods in the process. It also uses site-specific data to assess the subjectivity in the decision-making process, mainly reflected through the assignment of the criteria weights and uncertainties in the criteria scores. Analysis of the sensitivity of the results to these factors is used as a way to assess the stability and robustness of the ranking as a first step of the sediment management decision-making process.


Integrated Environmental Assessment and Management | 2007

Sediment Quality Assessment and Dredged Material Management in Spain: Part I, Application of Sediment Quality Guidelines in the Bay of Santander

Manuel Alvarez-Guerra; Javier R. Viguri; M Carmen Casado-Martínez; T. Ángel DelValls

ABSTRACT Sediments are an essential component of aquatic ecosystems that must be assessed and managed properly. The use of quantitative environmental quality standards derived from consideration of sediment quality guidelines (SQGs) can be effective as part of a tiered risk assessment approach. In Part I of this 2-part paper addressing sediment quality assessment and dredged material management in Spain, different SQG methods are used to evaluate sediment quality in the Bay of Santander, located in the Cantabric Sea along the northern coast of Spain, and to guide development of empirically derived SQGs for marine sediments. The results of the study indicate a great heterogeneity of SQGs, both with regard to the numeric values for a particular chemical and the number of substances for which SQGs have been derived. The analysis highlights the scarce development of empirical SQGs for priority substances identified in current European Union water policy. Nonetheless, the application of SQGs makes it possible to classify different zones of sediment quality in the Bay of Santander. Part II of this 2-part paper considers the environmental impacts of dredged material disposal. Legislation and criteria used to regulate dredged material disposal at sea in different European countries are reviewed, and action levels derived by different countries were used to evaluate management of dredged sediments from Cádiz Bay, located on the South Atlantic coast of Spain.


Science of The Total Environment | 2010

Prioritization of sediment management alternatives using stochastic multicriteria acceptability analysis.

Manuel Alvarez-Guerra; Laure Canis; Nikolaos Voulvoulis; Javier R. Viguri; Igor Linkov

Decision-making for sediment management is a complex task that requires the consideration of temporal and spatial impacts of several remedial alternatives as well as the associated economic, social and political impact. Multicriteria decision analysis (MCDA) is becoming increasingly recognized as an important environmental management tool that can be used to support the selection of suitable remediation alternatives and prioritization of management units in space and time. This paper proposes an MCDA framework for prioritizing sediment management alternatives. This framework involves identifying of a set of feasible options, as well as defining and evaluating criteria which integrate relevant technical, economic, social and environmental aspects of remedies. The methodology allows an explicit consideration of uncertainty in criteria scores and weights by assigning probability distributions and analyzing subsequent Monte-Carlo simulations. The consideration of different stakeholder simulated values is used to assess the robustness of alternative rankings and to guide the selection of remediation options. An application of this methodology to a case study in the Bay of Santander, Spain, is presented. An assessment is conducted for the case of unknown preferences as well as for hypothetical preferences profiles for four types of stakeholders: Idealist, Politician, Environmentalist and Balanced. The results are used to visualize stakeholder positions and potential disagreements, allowing for the identification of a group of least preferred alternatives for each stakeholder. Stakeholder involvement has the potential to ease the remedy selection process during all stages of the decision-making process and to eventually remedy implementation.


Environmental Pollution | 2010

Development of models for predicting toxicity from sediment chemistry by partial least squares-discriminant analysis and counter-propagation artificial neural networks.

Manuel Alvarez-Guerra; Davide Ballabio; José Manuel Amigo; Rasmus Bro; Javier R. Viguri

There is strong interest in developing tools to link chemical concentrations of contaminants to the potential for observing sediment toxicity that can be used in initial screening-level sediment quality assessments. This paper presents new approaches for predicting toxicity in sediments, based on 10-day survival tests with marine amphipods, from sediment chemistry, by means of the application of Partial Least Squares-Discriminant Analysis (PLS-DA) and Counter-propagation Artificial Neural Networks (CP-ANNs) to large historical databases of chemical and toxicity data. The exploration of the internal structure of the developed models revealed inherent limitations of predicting toxicity from common chemical analyses of bulk contaminant concentrations. However, the results obtained in the validation of these models combined relevant values of non-error classification rate, sensitivity and specificity of, respectively, 76, 87 and 73% with PLS-DA and 92, 75 and 97% with CP-ANNs, outperforming the results reported for previous approaches.


Integrated Environmental Assessment and Management | 2007

Sediment Quality Assessment and Dredged Material Management in Spain: Part II, Analysis of Action Levels for Dredged Material Management and Application to the Bay of Cadiz

Manuel Alvarez-Guerra; Javier R. Viguri; M Carmen Casado-Martínez; T. Ángel DelValls

ABSTRACT When sediments are removed from aquatic bottoms, they turn into dredged material that must be managed, taking into account its environmental impact. In Part II of this 2-part paper addressing sediment quality assessment and dredged material management in Spain, legislation and criteria used to regulate dredged material disposal at sea in different European countries are reviewed, as are action levels (ALs) derived by different countries used to evaluate management of dredged sediments from Cádiz Bay located on the South Atlantic coast of Spain. Comparison of ALs established for dredged material disposal by different countries reveals orders of magnitude differences in the values established for the same chemical. In Part I of this 2-part paper, review of different sediment quality guideline (SQG) methods used to support sediment quality assessments indicated a great heterogeneity of SQGs, both with regard to the numeric values for a particular chemical and the number of substances for which SQGs have been derived. The analysis highlighted the absence of SQGs for priority substances identified in current European Union water policy. Here, in Part II, the ALs are applied to dredged sediments from Cádiz Bay (South Atlantic coast of Spain), evidencing that the heterogeneity of ALs implemented in the reviewed countries could determine different management strategies. The application of other measurements such as bioassays might offer information useful in identifying a cost-effective management option in a decision-making framework, especially for dredged material with intermediate chemical concentrations.


Archive | 2018

Electrochemical Conversion of CO2 to Value-Added Products

Angel Irabien; Manuel Alvarez-Guerra; Jonathan Albo; Antonio Dominguez-Ramos

Abstract Climate change mitigation requires the development of new processes to reduce the amount of carbon dioxide in the atmosphere. The products of CO2 utilization can supplement or replace chemical feedstocks, fine chemicals, pharmaceutical, and polymers. Carbon capture and utilization based on innovative electroreduction processes is one of the suggested routes to reduce the use of coal and oil as carbon sources due to the recycling of carbon. Some chemicals may be produced using carbon dioxide, decreasing the use of natural resources. The electrocatalytic processes to obtain formate and methanol as derived products from CO2 are discussed in this chapter, taking into account the electro-catalysts and the reactor design in the development of innovative processes.

Collaboration


Dive into the Manuel Alvarez-Guerra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan Albo

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge