Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel Calleja is active.

Publication


Featured researches published by Manuel Calleja.


Science | 1996

Visualization of Gene Expression in Living Adult Drosophila

Manuel Calleja; Eduardo Moreno; Soraya Pelaz; Ginés Morata

To identify genes involved in the patterning of adult structures, Gal4-UAS (upstream activating site) technology was used to visualize patterns of gene expression directly in living flies. A large number of Gal4 insertion lines were generated and their expression patterns were studied. In addition to identifying several characterized developmental genes, the approach revealed previously unsuspected genetic subdivisions of the thorax, which may control the disposition of pattern elements. The boundary between two of these domains coincides with localized expression of the signaling molecule wingless.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A tumor-suppressing mechanism in Drosophila involving cell competition and the Hippo pathway

Javier A. Menendez; Ainhoa Pérez-Garijo; Manuel Calleja; Ginés Morata

Mutant larvae for the Drosophila gene lethal giant larva (lgl) develop neoplastic tumors in imaginal discs. However, lgl mutant clones do not form tumors when surrounded by wild-type tissue, suggesting the existence of a tumor-suppressing mechanism. We have investigated the tumorigenic potential of lgl mutant cells by generating wing compartments that are entirely mutant for lgl and also inducing clones of various genetic combinations of lgl− cells. We find that lgl− compartments can grow indefinitely but lgl− clones are eliminated by cell competition. lgl mutant cells may form tumors if they acquire constitutive activity of the Ras pathway (lgl− UAS-rasV12), which confers proliferation advantage through inhibition of the Hippo pathway. Yet, the majority of lgl− UAS-rasV12 clones are eliminated in spite of their high proliferation rate. The formation of a tumor requires in addition the formation of a microenvironment that allows mutant cells to evade cell competition.


Development | 2000

Generation of medial and lateral dorsal body domains by the pannier gene of Drosophila

Manuel Calleja; Héctor Herranz; Carlos Estella; José Casal; Peter A. Lawrence; Pat Simpson; Ginés Morata

The homeobox gene extradenticle (exd) acts as a cofactor of the homeotic genes in the specification of larval patterns during embryogenesis. To study its role in adult patterns, we have generated clones of mutant exd- cells and examined their effect on the different body parts. In some regions, exd- clones exhibit homeotic transformations similar to those produced by known homeotic mutations such as Ultrabithorax (Ubx), labial (lab), spineless-aristapedia (ssa) or Antennapedia (Antp). In other regions, the lack of exd causes novel homeotic transformations producing ectopic eyes and legs. Moreover, exd is also required for functions normally not associated with homeosis, such as the maintenance of the dorsoventral pattern, the specification of subpatterns in adult appendages or the arrangement of bristles in the mesonotum and genitalia. Our findings indicate that exd is critically involved in adult morphogenesis, not only in the homeotic function but also in several other developmental processes.Previously published experiments have shown that the endogenous Dfd gene can be ectopically activated by its own (heat-shock-driven) product in a subset of cells of different segments. This results in the differentiation of maxillary structures like cirri and mouth hooks in places where they normally do not appear, and represents a phenomenon of autocatalysis of homeotic gene function that differs from the normal activation process. We show that this out-of-context activation occurs in cells belonging to the anterior compartments of the three thoracic and the A1 to A8 abdominal segments and that it requires the normal function of the polarity genes wingless (wg) and engrailed (en). The wg product, in addition to that of Dfd, appears to be sufficient to activate the endogenous Dfd gene in many embryonic cells. We have studied the effect of several homeotic genes on Dfd activation and phenotypic expression: Scr, Antp, Ubx and Abd-B repress Dfd both transcriptionally and at the phenotypic level, if their products are in sufficient amounts. The endogenous abd-A gene does not have a noticeable effect, but when it is replaced by an hsp70-abd-A gene, which produces a high and uniform level of expression, the phenotypic expression of Dfd is suppressed. Our results also suggest that the differentiation of cirri is induced by Dfd-expressing cells in non-expressing neighboring cells, and that this interaction occurs across the parasegmental border.During evolution, many animal groups have developed specialised outgrowths of the body wall, limbs or appendages. The type of appendage depends on the identity of the segment where they appear, indicating that the Hox genes contribute to appendage specification. Moreover, work carried out principally in Drosophila has identified the gene products and the mechanisms involved in pattern formation in the appendages. In this essay, we compare the morphogenetic processes in the appendages and the body wall; the function of the Hox genes and the response to the signalling molecules involved in local patterning. We speculate that, although the basic mechanisms are similar, there are significant differences in the manner the body trunk and appendages respond to them.[ES] La pared celular es un elemento morfogenetico esencial que determina la forma final de las celulas y que las protege contra la lisis. En S. pombe esta esta constituida por ? y s-glucano y manoproteinas y tanto la sintesis como remodelacion de su estructura requiere de diferentes enzimas estrictamente reguladas. En S. pombe existe poca informacion de como se lleva a cabo la incorporacion del material de membrana y sobre la regulacion de las enzimas implicadas en la sintesis y remodelacion de la pared celular por los mecanismos de transporte vesicular. Para abordar el estudio de como el trafico vesicular mediado por clatrina afecta a la morfogenesis de S. pombe y en particular cual es su papel en la regulacion de la sintesis de la pared celular se ha analizado el papel tanto de la clatrina, mediante el analisis de diferentes mutantes de la cadena ligera de la clatrina, como el del adaptador AP-2, que interviene en el proceso de endocitosis mediada por clatrina. Se ha demostrado que la delecion de la cadena ligera de la clatrina resulta letal para las celulas de S. pombe y que esta letalidad se rescata al incubar las celulas en un medio suplementado con sorbitol. En este caso aunque las celulas pueden sobrevivir poseen graves defectos morfologicos, en crecimiento, en trafico vesicular, en desarrollo sexual, etc. Se ha podido comprobar que la ausencia de Clc1p afecta drasticamente a la estabilidad de Chc1p hecho que hace que, a diferencia de otros organismos, la supervivencia de S. pombe sea mas dependiente de la presencia clatrina. Ademas se ha demostrado que la letalidad causada por la ausencia de Clc1p se debe principalmente a defectos graves en la sintesis de la pared celular que afectan directamente a la sintesis del glucano. Los resultados obtenidos muestran que una reduccion en la cantidad de clatrina causa un leve impacto en el transporte vesicular en general y en otros procesos y elementos biologicos, pero afecta gravemente a la secrecion de enzimas de sintesis/remodelacion de la pared celular, como las s(1,3)glucan sintasa y endoglucanasas. En cuanto al complejo adaptador AP-2 se ha comprobado, que a diferencia de lo que se conoce hasta el momento en otros organismos unicelulares, este forma un complejo con la clatrina y se ha demostrado que tiene un papel en la endocitosis general de S. pombe. Asi mismo se ha descubierto que AP-2 puede estar interviniendo en la sintesis de la pared celular ya que su ausencia afecta a la actividad s-glucan sintasa y hace que S. pombe sea hiper-sensible a compuestos que afectan a la integridad de la pared celular.We characterized a novel protein of the Ras family, p19 (H-RasIDX). The c-H-ras proto-oncogene undergoes alternative splicing of the exon termed IDX. We show that the alternative p19 mRNA is stable and as abundant as p21 (p21 H-Ras4A) mRNA in all of the human tissues and cell lines tested. IDX is spliced into stable mRNA in different mammalian species, which present a high degree of nucleotide conservation. Both the endogenous and the transiently expressed p19 protein are detected in COS-1 and HeLa cells and show nuclear diffuse and speckled patterns as well as cytoplasmic localization. In yeast two-hybrid assays, p19 did not interact with two known p21 effectors, Raf1 and Rin1, but was shown to interact with RACK1, a scaffolding protein that promotes multiprotein complexes in different signaling pathways. This observation suggests that p19 and p21 play differential and complementary roles in the cell.Resumen del trabajo presentado al Congreso Nacional de Biotecnologia, celebrado en Murcia del 18 al 21 de junio de 2017.A. G. G. thanks Ramon Areces Foundation for a grant. J. C. thanks NIH-CA24487 for financial support.Ministerio de Educacion y Ciencia and grant S-0505/MAT-0283 from Comunidad Autonoma de Madrid to M.S. and by an Institutional grant from Fundacion Ramon Areces to the Centro de Biologia Molecular “Severo Ochoa”We report a genetic and molecular study of UbxMX6 and Ubx195rx1, two mutations in the Ultrabithorax (Ubx) locus which appear to have a strong effect on the activity of the homologous Ubx gene. These mutations show the characteristic embryonic and adult phenotypes of Ubx null alleles, and also fail to produce any detectable Ubx product. Yet, genetic and phenotypic analyses involving a large number of trans heterozygous combinations of UbxMX6 and Ubx195rx1 with different classes of Ubx mutations, indicate that they hyperactivate the homologous gene. This effect is induced on wildtype or mutant forms of Ubx, provided that the pairing in the bithorax region is normal, i.e. these mutations have a strong positive effect on transvection. We also show that, unlike all the other known cases of transvection in Ubx, this is not zeste-dependent. Southern analyses indicate that UbxMX6 is a 3.4 kb deletion, and Ubx195rx1 is an approximately 11 kb insertion of foreign DNA, both in the promoter region. We speculate that the region altered in the mutations may have a wildtype function to ensure cis-autonomy of the regulation of Ubx transcription.Resumen del trabajo presentado al Congreso Nacional de Biotecnologia, celebrado en Murcia del 18 al 21 de junio de 2017.The pannier (pnr) gene of Drosophila encodes a zinc-finger transcription factor of the GATA family and is involved in several developmental processes during embryonic and imaginal development. We report some novel aspects of the regulation and function of pnr during embryogenesis. Previous work has shown that pnr is activated by decapentaplegic (dpp) in early development, but we find that after stage 10, the roles are reversed and pnr becomes an upstream regulator of dpp. This function of pnr is necessary for the activation of the Dpp pathway in the epidermal cells implicated in dorsal closure and is not mediated by the JNK pathway, which is also necessary for Dpp activity in these cells. In addition, we show that pnr behaves as a selector-like gene in generating morphological diversity in the dorsoventral body axis. It is responsible for maintaining a subdivision of the dorsal half of the embryo into two distinct, dorsomedial and dorsolateral, regions, and also specifies the identity of the dorsomedial region. These results, together with prior work on its function in adults, suggest that pnr is a major factor in the genetic subdivision of the body of Drosophila.10th International Symposium on Reproductive Physiology of Fish (10th ISRPF), Expanding the khowledge base of reproductive success: from genes to the environment, 25-30 May 2014, Olhao, Portugal.-- 1 pageBy using a hsp70-Ubx fusion gene, we have ectopically expressed a Ubx product in the embryonic head primordia and studied the developmental effects on the larval head. We find that after high and persistent levels of Ubx product, the head is replaced by three (C1, C2 and C3) abdominal-like denticle belts. The C2 and C3 belts are the homeotic transformations of parasegments 1 and 2, respectively, while the C1 belt probably derives from the transformation and subsequent fusion of the most anterior procephalic primordia. On the basis of their response to the Ubx product and other arguments, we propose that the larval head is made of two genetically distinct components; one is the procephalon and the anterior region of the mandibular lobe, and the other is part of the parasegmental trunk and includes parasegments 1 and 2. Our results also indicate that most or all the larval head structures derive from precursor cells of ventral origin.The Iroquois (Iro) family of genes are found in nematodes, insects and vertebrates. They usually occur in one or two genomic clusters of three genes each and encode transcriptional controllers that possess a characteristic homeodomain. The Iro genes function early in development to specify the identity of diverse territories of the body, such as the dorsal head and dorsal mesothorax of Drosophila and the neural plate of Xenopus. In some aspects they act in the same way as classical selector genes, but they display specific properties that place them into a category of their own. Later in development in both Drosophila and vertebrates, the Iro genes function again to subdivide those territories into smaller domains.The pannier (pnr) gene encodes a GATA transcription factor and acts in several developmental processes in Drosophila, including embryonic dorsal closure, specification of cardiac cells and bristle determination. We show that pnr is expressed in the mediodorsal parts of thoracic and abdominal segments of embryos, larvae and adult flies. Its activity confers cells with specific adhesion properties that make them immiscible with non-expressing cells. Thus there are two genetic domains in the dorsal region of each segment: a medial (MED) region where pnr is expressed and a lateral (LAT) region where it is not. The homeobox gene iroquois (iro) is expressed in the LAT region. These regions are not formed by separate polyclones of cells, but are defined topographically. We show that ectopic pnr in the wing induces MED thoracic development, indicating that pnr specifies the identity of the MED regions. Correspondingly, when pnr is removed from clones of cells in the MED domain, they sort out and apparently adopt the LAT fate. We propose that (1) the subdivision into MED and LAT regions is a general feature of the Drosophila body plan and (2) pnr is the principal gene responsible for this subdivision. We argue that pnr acts like a classical selector gene but differs in that its expression is not propagated through cell divisions.We have developed a specific polyclonal antibody that recognizes the protein products of the abdominal-A (abd-A) gene, a member of the bithorax complex of Drosophila. The normal expression domain extends from parasegments 7 to 13, in good correspondence with previous genetic and molecular results. However, while the anterior border of expression is precisely demarcated by a parasegmental boundary, the posterior border does not coincide with a lineage boundary. Within the normal domain, the expression of abd-A shows intrametameric modulation; the amount of product is higher in posterior compartments and in the most anterior cells of the anterior compartments and then gradually decreases. We have examined the effect on abd-A expression of a number of mutations, some mapping within and others outside the abd-A transcription unit. Those mapping to the transcription unit eliminate or severely reduce the amount of abd-A antigen, while those mapping outside produce an abnormal distribution of abd-A protein. Finally, we show that the abd-A gene is down-regulated in part of the Abdominal-B (Abd-B) domain, precisely in those regions where the Abd-B gene is expressed at high levels.Resumen del trabajo presentado al Yeast Genetics Meeting, celebrado en Stanford, California (USA) del 22 al 26 de agosto de 2018.The effect of the anti-tumoral drug lauryl gallate on the infectivity of the African swine fever virus among other DNA (Herpes simplex and Vaccinia) and RNA (Influenza, Porcine transmissible gastroenteritis and Sindbis) viruses, involved in animal and human diseases, is analyzed. Viral production was strongly inhibited in different cell lines at non-toxic concentrations of the drug (1-10 μM), reducing the titres from 3 to more than 5 log. units depending on the multiplicity of infection. In our model system (African swine fever virus in Vero cells), the addition of the drug 1 h before virus adsorption, completely abolished virus productivity in a one-step growth virus cycle. Interestingly, no inhibitory effect was observed when lauryl gallate was added after 5 to 8 hpi. Both cellular and viral DNA synthesis and late viral transcription were inhibited by the drug, but, however, the early viral protein synthesis and the virus-mediated increasing of p53 remained unaffected. Activation of the apoptotic effector caspase-3 was not detected after lauryl gallate treatment of Vero cells, and, furthermore, the presence of the drug abrogated the activation of this protease induced by the virus infection. The overall results likely indicate that a cellular factor/function might be the target of the antiviral action of alkyl gallates.Tesis Doctoral presentada por Eduardo Rodenas Martinez en el Centro Andaluz de Biologia del Desarrollo, centro mixto CSIC-UPO.Resumen del trabajo presentado al Yeast Genetics Meeting, celebrado en Stanford, California (USA) del 22 al 26 de agosto de 2018.


Current Biology | 2000

The progeny of wingless-expressing cells deliver the signal at a distance in Drosophila embryos

Sven Pfeiffer; Cyrille Alexandre; Manuel Calleja; Jean-Paul Vincent

Pattern formation in developing animals requires that cells exchange signals mediated by secreted proteins. How these signals spread is still unclear. It is generally assumed that they reach their target site either by diffusion or active transport (reviewed in [1] [2]). Here, we report an alternative mode of transport for Wingless (Wg), a member of the Wnt family of signaling molecules. In embryos of the fruit fly Drosophila, the wingless (wg) gene is transcribed in narrow stripes of cells abutting the source of Hedgehog protein. We found that these cells or their progeny are free to roam towards the anterior. As they do so, they no longer receive the Hedgehog signal and stop transcribing wg. The cells leaving the expression domain retain inherited Wg protein in secretory vesicles, however, and carry it forwards over a distance of up to four cell diameters. Experiments using a membrane-tethered form of Wg showed that this mechanism is sufficient to account for the normal range of Wg. Nevertheless, evidence exists that Wg can also reach distant target cells independently of protein inheritance, possibly by restricted diffusion. We suggest that both transport mechanisms operate in wild-type embryos.


Gene | 2002

How to pattern an epithelium: lessons from achaete-scute regulation on the notum of Drosophila.

Manuel Calleja; Olivier Renaud; Kazuya Usui; Daniela Pistillo; Ginés Morata; Pat Simpson

The notum of Drosophila is a good model system for the study of two-dimensional pattern formation. Attention has mainly focused on the regulation of the spatial expression of the genes of the achaete-scute complex (AS-C) that results in a stereotyped bristle pattern. Expression of AS-C genes has traditionally been viewed as a consequence of the activity of a group of factors that constitute a prepattern [Stern, 1954. Am. Sci. 42, 213]. The prepattern is thought to be composed of a mosaic of transcription factors that act in combination, through discrete cis-regulatory sequences, to activate expression of genes of the AS-C in small clusters of cells at the sites of each future bristle. Recent results challenge this view and suggest a hierarchy of activity amongst prepattern genes. It is suggested that in the medial notum, the selector-like gene pannier regulates the entire pattern, and is the only factor to directly activate AS-C genes. Other factors may play subsidiary roles. On the lateral notum genes of the iroquois complex appear to regulate the lateral pattern. Regulation of pannier and iroquois depends upon the signalling molecule Decapentaplegic. The majority of genes are expressed in either longitudinal or transverse domains on the notum and we discuss the possibility that pattern formation may rely on these two axial coordinates. We also discuss preliminary results suggesting that prepattern factors also regulate genes required for other, little studied, aspects of notal morphology, such as the muscle attachment sites and pigment distribution. Thus there may be a common prepattern for the entire structure.


Development | 2003

The role of buttonhead and Sp1 in the development of the ventral imaginal discs of Drosophila.

Carlos Estella; Gabrielle Rieckhof; Manuel Calleja; Ginés Morata

The related genes buttonhead (btd) and Drosophila Sp1 (the Drosophila homologue of the human SP1 gene) encode zinc-finger transcription factors known to play a developmental role in the formation of the Drosophila head segments and the mechanosensory larval organs. We report a novel function of btd and Sp1: they induce the formation and are required for the growth of the ventral imaginal discs. They act as activators of the headcase (hdc) and Distal-less (Dll) genes, which allocate the cells of the disc primordia. The requirement for btd and Sp1 persists during the development of ventral discs: inactivation by RNA interference results in a strong reduction of the size of legs and antennae. Ectopic expression of btd in the dorsal imaginal discs (eyes, wings and halteres) results in the formation of the corresponding ventral structures (antennae and legs). However, these structures are not patterned by the morphogenetic signals present in the dorsal discs; the cells expressing btd generate their own signalling system, including the establishment of a sharp boundary of engrailed expression, and the local activation of the wingless and decapentaplegic genes. Thus, the Btd product has the capacity to induce the activity of the entire genetic network necessary for ventral imaginal discs development. We propose that this property is a reflection of the initial function of the btd/Sp1 genes that consists of establishing the fate of the ventral disc primordia and determining their pattern and growth.


Archive | 1986

Embryogenesis and aging of Drosophila melanogaster flown in the space shuttle

Roberto Marco; Vernos I; Juan M. Gonzalez; Manuel Calleja

This experiment was made possible by the support of the Comision Nacional de la Investigacion del Espacio (CONIE). Partial support of the CAICYT is also acknowledged.


Journal of Biological Chemistry | 2008

Mitochondrial Transcription Factor B2 Is Essential for Metabolic Function in Drosophila melanogaster Development

Cristina Adán; Yuichi Matsushima; Rosana Hernández-Sierra; Raquel Marco-Ferreres; Miguel Ángel Fernández-Moreno; Emiliano González-Vioque; Manuel Calleja; Juan J. Aragón; Laurie S. Kaguni; Rafael Garesse

Characterization of the basal transcription machinery of mitochondrial DNA (mtDNA) is critical to understand mitochondrial pathophysiology. In mammalian in vitro systems, mtDNA transcription requires mtRNA polymerase, transcription factor A (TFAM), and either transcription factor B1 (TFB1M) or B2 (TFB2M). We have silenced the expression of TFB2M by RNA interference in Drosophila melanogaster. RNA interference knockdown of TF2BM causes lethality by arrest of larval development. Molecular analysis demonstrates that TF2BM is essential for mtDNA transcription during Drosophila development and is not redundant with TFB1M. The impairment of mtDNA transcription causes a dramatic decrease in oxidative phosphorylation and mitochondrial ATP synthesis in the long-lived larvae, and a metabolic shift to glycolysis, which partially restores ATP levels and elicits a compensatory response at the nuclear level that increases mitochondrial mass. At the cellular level, the mitochondrial dysfunction induced by TFB2M knockdown causes a severe reduction in cell proliferation without affecting cell growth, and increases the level of apoptosis. In contrast, cell differentiation and morphogenesis are largely unaffected. Our data demonstrate the essential role of TFB2M in mtDNA transcription in a multicellular organism, and reveal the complex cellular, biochemical, and molecular responses induced by impairment of oxidative phosphorylation during Drosophila development.


Journal of Neurochemistry | 2008

Over‐expression of the catalytic core of mitochondrial DNA (mtDNA) polymerase in the nervous system of Drosophila melanogaster reduces median life span by inducing mtDNA depletion

Francisco Martínez-Azorín; Manuel Calleja; Rosana Hernández-Sierra; Carol L. Farr; Laurie S. Kaguni; Rafael Garesse

DNA polymerase γ (pol γ) is the sole DNA polymerase devoted to mitochondrial DNA (mtDNA) replication. We have characterized the molecular and physiological effects of over‐expression of the catalytic subunit of pol γ, pol γ‐α, in the nervous system of Drosophila melanogaster using the upstream activation sequence (UAS)/yeast transcriptional activator by binding to UAS (GAL4) system. Tissue‐specific over‐expression of pol γ‐α was confirmed by immunoblot analysis, whereas the very low levels of endogenous protein are undetectable in UAS or GAL4 control lines. The transgenic flies over‐expressing pol γ‐α in the nervous system showed a moderate increase in pupal lethality, and a significant decrease in the median life span of adult flies. Moreover, these flies displayed a decrease in the rate of synthesis of mtDNA, which is accompanied by a significant mtDNA depletion, and a corresponding decrease in the levels of mitochondrial transcription factor A (mtTFA). Biochemical analysis showed an oxidative phosphorylation (OXPHOS) defect in transgenic flies, which were more susceptible to oxidative stress. Although we did not detect apoptosis in the nervous system of adult transgenic flies, brains of larvae over‐expressing pol γ‐α showed evidence of increased cell death that correlates with the observed phenotypes. Our data establish an animal model that mimics some of the features of human mtDNA depletion syndromes.


Journal of Biological Chemistry | 2012

Coiled Coil Domain-containing Protein 56 (CCDC56) Is a Novel Mitochondrial Protein Essential for Cytochrome c Oxidase Function

Susana Peralta; Paula Clemente; Alvaro Sanchez-Martinez; Manuel Calleja; Rosana Hernández-Sierra; Yuichi Matsushima; Cristina Adán; Cristina Ugalde; Miguel Ángel Fernández-Moreno; Laurie S. Kaguni; Rafael Garesse

Background: Cytochrome c oxidase (COX), the final enzyme of the mitochondrial electron transport chain, requires several assembly factors for its proper function. Results: ccdc56 knock-out flies showed developmental delay, lethality, and a dramatic decrease in the levels/activity of COX. Conclusion: CCDC56 protein is necessary for COX function and for viability in flies. Significance: Drosophila CCDC56 is a novel putative COX assembly factor conserved in humans. In Drosophila melanogaster, the mitochondrial transcription factor B1 (d-mtTFB1) transcript contains in its 5′-untranslated region a conserved upstream open reading frame denoted as CG42630 in FlyBase. We demonstrate that CG42630 encodes a novel protein, the coiled coil domain-containing protein 56 (CCDC56), conserved in metazoans. We show that Drosophila CCDC56 protein localizes to mitochondria and contains 87 amino acids in flies and 106 in humans with the two proteins sharing 42% amino acid identity. We show by rapid amplification of cDNA ends and Northern blotting that Drosophila CCDC56 protein and mtTFB1 are encoded on a bona fide bicistronic transcript. We report the generation and characterization of two ccdc56 knock-out lines in Drosophila carrying the ccdc56D6 and ccdc56D11 alleles. Lack of the CCDC56 protein in flies induces a developmental delay and 100% lethality by arrest of larval development at the third instar. ccdc56 knock-out larvae show a significant decrease in the level of fully assembled cytochrome c oxidase (COX) and in its activity, suggesting a defect in complex assembly; the activity of the other oxidative phosphorylation complexes remained either unaffected or increased in the ccdc56 knock-out larvae. The lethal phenotype and the decrease in COX were partially rescued by reintroduction of a wild-type UAS-ccdc56 transgene. These results indicate an important role for CCDC56 in the oxidative phosphorylation system and in particular in COX function required for proper development in D. melanogaster. We propose CCDC56 as a candidate factor required for COX biogenesis/assembly.

Collaboration


Dive into the Manuel Calleja's collaboration.

Top Co-Authors

Avatar

Rafael Garesse

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Roberto Marco

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ginés Morata

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Rosana Hernández-Sierra

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Beatriz Batuecas

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Carlos Estella

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristina Adán

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge