Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel de Rojas is active.

Publication


Featured researches published by Manuel de Rojas.


Parasitology Research | 2013

Molecular characterization and phylogeny of whipworm nematodes inferred from DNA sequences of cox1 mtDNA and 18S rDNA.

Rocío Callejón; Steven A. Nadler; Manuel de Rojas; Antonio Zurita; Jana Petrášová; C. Cutillas

A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from the mitochondrial cytochrome c oxidase 1 (cox1) and ribosomal 18S genes. The taxa consisted of different described species and several host-associated isolates (undescribed taxa) of Trichuris collected from hosts from Spain. Sequence data from mitochondrial cox1 (partial gene) and nuclear 18S near-complete gene were analyzed by maximum likelihood and Bayesian inference methods, as separate and combined datasets, to evaluate phylogenetic relationships among taxa. Phylogenetic results based on 18S ribosomal DNA (rDNA) were robust for relationships among species; cox1 sequences delimited species and revealed phylogeographic variation, but most relationships among Trichuris species were poorly resolved by mitochondrial sequences. The phylogenetic hypotheses for both genes strongly supported monophyly of Trichuris, and distinct genetic lineages corresponding to described species or nematodes associated with certain hosts were recognized based on cox1 sequences. Phylogenetic reconstructions based on concatenated sequences of the two loci, cox1 (mitochondrial DNA (mtDNA)) and 18S rDNA, were congruent with the overall topology inferred from 18S and previously published results based on internal transcribed spacer sequences. Our results demonstrate that the 18S rDNA and cox1 mtDNA genes provide resolution at different levels, but together resolve relationships among geographic populations and species in the genus Trichuris.


Parasitology Research | 2012

Molecular study on three morphotypes of Demodex mites (Acarina: Demodicidae) from dogs

Manuel de Rojas; Cristina Riazzo; Rocío Callejón; D. C. Guevara; C. Cutillas

Canine demodicosis is a severe and highly prevalent dermatologic disease in dogs. Pet dogs can be affected by three recognized Demodex species that can produce clinical effects. In this paper, three morphological types of Demodex mites have been isolated from Spanish dogs. A complete morphobiometrical study of each one has been carried out. Morphological and biometrical studies revealed three closely related populations with some distinctive characteristics and could be identified as Demodex canis, Demodex injai, and Demodex sp. “cornei.” Furthermore, one population of D. canis from China, different populations of Demodex folliculorum from human skin (Spain and China), D. folliculorum from human eyelashes (Spain), and Demodex brevis from human skin (China) were considered to find out the level of variation between different species and geographical origin. The aim of the present study is to assess the usefulness of mitochondrial DNA molecular markers in establishing phylogenetic relationships and resolve taxonomic questions in Demodex mites. Molecular studies based on the amplification and sequencing of the 16S rDNA and cytochrome oxidase I mitochondrial genes did not show clear differences between the three morphotypes considered. Furthermore, phylogenetic relationships in Demodex mites were analyzed. The resulting phylogenetic trees show that Demodex species from dogs were gathered together, and populations of D. folliculorum from humans appear together in a different branch; however, D. brevis from humans seemed to be more distant. Our results show that cytochrome oxidase I region is a useful tool to solve different taxonomic questions at the species and population level and to infer phylogenetic relationships in Demodex species. However, 16S mitochondrial rDNA seems a good marker for comparisons at an interspecies level, but not at a population level in this group of mites. Furthermore, from genetic distance and divergence data, we would suggest that D. canis, D. injai, and Demodex sp. cornei are polymorphisms of the same species.


Parasitology Research | 2012

Morphobiometrical and molecular study of two populations of Demodex folliculorum from humans.

Manuel de Rojas; Cristina Riazzo; Rocío Callejón; D. C. Guevara; C. Cutillas

A morphobiometrical and molecular study of two populations of Demodex folliculorum from humans isolated from different habitats, skin and eyelashes follicles, were carried out. Morphological and biometrical studies revealed two closely related populations with any distinctive characteristics. For molecular study, a 436-bp region of the 16S rDNA gene and a 453-bp region of the cytochrome oxidase I (COI) gene from individual mites of each population considered were sequenced. Intraindividual and interindividual sequence variation was studied in both populations. Our data show that 16S rDNA is not a useful marker to discriminate between populations; however, COI gene sequences can help to identify the two populations considered, which are morphologically very close and difficult to separate by classic methods. These results are in agreement with the morphological and biometrical differences detected between D. folliculorum from eyelashes and human skin. This study appeals for the revision of the taxonomic status of the D. folliculorum populations, as well as for the species included within genus Demodex.


Parasitology Research | 2007

Utility of ITS1-5.8S-ITS2 and 16S mitochondrial DNA sequences for species identification and phylogenetic inference within the Rhinonyssus coniventris species complex (Acari: Rhinonyssidae)

Manuel de Rojas; J.M. Ubeda; C. Cutillas; Ma. Dolores Mora; C. Ariza; D. C. Guevara

The complete internal transcribed spacer 1 (ITS1), 5.8S rDNA, and ITS2 region of the ribosomal DNA and a 390-bp region of the 16S rDNA gene from five taxa belonging to Rhinonyssus (Rhinonyssus vanellus, Rhinonyssus tringae, Rhinonyssus neglectus, Rhinonyssus echinipes from Kentish plover, and Rhinonyssus echinipes from grey plover) were sequenced to examine the level of sequence variation and the taxonomic levels to show utility in phylogeny estimation. Our data show that these molecular markers can help to discriminate between species and populations included in the Rhinonyssus coniventris complex (R. tringae, R. neglectus, R. echinipes), which are morphologically very close and difficult to separate by classic methods. A comparative study with sequences from other rhinonyssid mites previously published was also carried out. The resulting phylogenetic tree inferred from ITS1–5.8S–ITS2 region sequences obtained in this paper, together with those from other 11 taxa of rhinonyssid, shows slight differences from the current taxonomy of the Rhinonyssidae. This study appeals for the revision of the taxonomic status of the R. coniventris complex, as well as for the species included within it.


Parasitology Research | 2014

Trichuris colobae n. sp. (Nematoda: Trichuridae), a new species of Trichuris from Colobus guereza kikuyensis

C. Cutillas; Manuel de Rojas; Antonio Zurita; Rocío Oliveros; Rocío Callejón

In the present work, a morphological and biometrical study of whipworms Trichuris Roederer, 1761 (Nematoda: Trichuridae) parasitizing Colobus guereza kikuyensis has been carried out. Biometrical and statistical data showed that the mean values of individual variables between Trichuris suis and Trichuris sp. from C. g. kikuyensis differed significantly (P < 0.001) when Student’s t test was performed: seven male variables (width of esophageal region of body, maximum width of posterior region of body, width in the place of junction of esophagus and the intestine, length of bacillary stripes, length of spicule, length of ejaculatory duct, and distance between posterior part of testis and tail end of body) and three female variables (width of posterior region of body, length of bacillary stripes, and distance of tail end of body and posterior fold of seminal receptacle). The combination of these characters permitted the discrimination of T. suis with respect to Trichuris sp. from C. g. kikuyensis, suggesting a new species of Trichuris. Furthermore, males of Trichuris sp. from C. g. kikuyensis showed a typical subterminal pericloacal papillae associated to a cluster of small papillae that were absent in males of T. suis, while females of Trichuris from Colobus appeared with a vulval region elevated/over-mounted showing a crater-like appearance. The everted vagina showed typical triangular sharp spines by optical microscopy and SEM. Thus, the existence of a new species of Trichuris parasitizing C. g. kikuyensis has been proposed.


Journal of Zhejiang University-science B | 2013

Discrimination between Demodex folliculorum (Acari: Demodicidae) isolates from China and Spain based on mitochondrial cox1 sequences

Ya-E Zhao; Jun-Xian Ma; Li Hu; Li-Ping Wu; Manuel de Rojas

For a long time, classification of Demodex mites has been based mainly on their hosts and phenotypic characteristics. A new subspecies of Demodex folliculorum has been proposed, but not confirmed. Here, cox1 partial sequences of nine isolates of three Demodex species from two geographical sources (China and Spain) were studied to conduct molecular identification of D. folliculorum. Sequencing showed that the mitochondrial cox1 fragments of five D. folliculorum isolates from the facial skin of Chinese individuals were 429 bp long and that their sequence identity was 97.4%. The average sequence divergence was 1.24% among the five Chinese isolates, 0.94% between the two geographical isolate groups (China (5) and Spain (1)), and 2.15% between the two facial tissue sources (facial skin (6) and eyelids (1)). The genetic distance and rate of third-position nucleotide transition/transversion were 0.0125, 2.7 (3/1) among the five Chinese isolates, 0.0094, 3.1 (3/1) between the two geographical isolate groups, and 0.0217, 4.4 (3/1) between the two facial tissue sources. Phylogenetic trees showed that D. folliculorum from the two geographical isolate groups did not form sister clades, while those from different facial tissue sources did. According to the molecular characteristics, it appears that subspecies differentiation might not have occurred and that D. folliculorum isolates from the two geographical sources are of the same population. However, population differentiation might be occurring between isolates from facial skin and eyelids.


Parasitology | 2012

Phylogeography of Trichuris populations isolated from different Cricetidae rodents

Rocío Callejón; Manuel de Rojas; Carlos Feliu; Francisco Balao; Ángela Marrugal; Heikki Henttonen; D. C. Guevara; C. Cutillas

The phylogeography of Trichuris populations (Nematoda) collected from Cricetidae rodents (Muroidea) from different geographical regions was studied. Ribosomal DNA (Internal Transcribed Spacers 1 and 2, and mitochondrial DNA (cytochrome c- oxidase subunit 1 partial gene) have been used as molecular markers. The nuclear internal transcribed spacers (ITSs) 1 and 2 showed 2 clear-cut geographical and genetic lineages: one of the Nearctic region (Oregon), although the second was widespread throughout the Palaearctic region and appeared as a star-like structure in the minimum spanning network. The mitochondrial results revealed that T. arvicolae populations from the Palaearctic region were separated into 3 clear-cut geographical and genetic lineages: populations from Northern Europe, populations from Southern (Spain) and Eastern Europe (Croatia, Belarus, Kazahstan), and populations from Italy and France (Eastern Pyrénean Mountains). Phylogenetic analysis obtained on the basis of ITS1-5·8S-ITS2 rDNA sequences did not show a differential geographical structure; however, these markers suggest a new Trichuris species parasitizing Chionomys roberti and Cricetulus barabensis. The mitochondrial results revealed that Trichuris populations from arvicolinae rodents show signals of a post-glacial northward population expansion starting from the Pyrenees and Italy. Apparently, the Pyrenees and the Alps were not barriers to the dispersal of Trichuris populations.


Systematic Entomology | 2016

Ctenocephalides felis and Ctenocephalides canis: introgressive hybridization?

Antonio Zurita; Rocío Callejón; Manuel de Rojas; Ali Halajian; C. Cutillas

In the present work, a comparative molecular study of Ctenocephalides felis and Ctenocephalides canis isolated from dogs (Canis lupus familiaris) from different geographical regions (Spain, Iran and South Africa) was carried out. We found morphological variations in C. felis that do not correspond with molecular differences. The Internal Transcribed Spacers 1 and 2 (ITS1, ITS2) and 18S rRNA partial gene, and cytochrome c‐oxidase 1 (cox1) mtDNA partial gene sequences were determined to clarify the taxonomic status of these two species, and to assess interpopulation variation and interspecific sequence differences. In addition, a comparative phylogenetic study with other species of fleas using Bayesian, Maximum Parsimony and Maximum Likelihood analysis was performed. The 18S rRNA partial gene fragment was useful neither to discriminate C. canis and C. felis nor to infer phylogenetic relationships at this level, whereas ITS1 and ITS2 assessed for specific determination in the genus Ctenocephalides. The cox1 mtDNA sequences of C. felis revealed three main haplotypes and we suggest that there has been introgression of C. canis cox1 mtDNA into C. felis by Wolbachia pipientis. Based on cox1 sequences, restriction mapping identified many endonucleases that could be used to delineate different haplotypes of C. felis and to differentiate C. felis and C. canis.


Experimental and Applied Acarology | 2018

Evidence of cryptic species in the genus Tinaminyssus (Acari: Rhinonyssidae) based on morphometrical and molecular data

Manuel de Rojas; Jorge Doña; Roger Jovani; Ivan Dimov; Antonio Zurita; Rocío Callejón; María Rodríguez-Plá

The study of cryptic species allows to describe and to understand biodiversity, and the evolutionary processes shaping it. Mites of the family Rhinonyssidae are permanent parasites of the nasal cavities of birds, currently including about 500 described species and 12 genera. Here, we tested the hypothesis that mites from five populations of the genus Tinaminyssus—three isolated from European turtle doves (Streptopelia turtur), and two from Eurasian collared doves (Streptopelia decaocto; Aves: Columbiformes)—are, in fact, two cryptic species inhabiting different hosts. First, we performed a morphometrical study on 16 traits. Then, we used the ITS1-5.8S rDNA-ITS2 nuclear region (ITS region), and a fragment of the mitochondrial cytochrome c-oxidase 1 (COI) to carry out phylogenetic and species delimitation analyses on Tinaminyssus species. Morphological analyses revealed a lack of biometric differentiation among Tinaminyssus populations from the two host species. However, molecular analyses indicated a high degree of genetic differentiation between populations of Tinaminyssus sp. from S. turtur and S. decaocto. Overall, results show that they can be considered as different cryptic species, suggesting a case of evolutionary stasis, likely because of the anatomical similarity between closely-related bird host species.


Parasitology Research | 2007

Molecular identification of Trichuris vulpis and Trichuris suis isolated from different hosts

C. Cutillas; Manuel de Rojas; C. Ariza; J.M. Ubeda; D. C. Guevara

Collaboration


Dive into the Manuel de Rojas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Ariza

University of Seville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Dimov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Carlos Feliu

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge