Manuel Garrido
University of Coimbra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manuel Garrido.
Journal of Cell Biology | 2011
Petranka Krumova; Erik Meulmeester; Manuel Garrido; Marilyn Tirard; He-Hsuan Hsiao; Guillaume Bossis; Henning Urlaub; Markus Zweckstetter; Sebastian Kügler; Frauke Melchior; Mathias Bähr; Jochen H. Weishaupt
Sumoylation of α-synuclein decreases its rate of aggregation and its deleterious effects in vitro and in vivo.
Acta Neuropathologica | 2012
Grit Taschenberger; Manuel Garrido; Yuliya Tereshchenko; Mathias Bähr; Markus Zweckstetter; Sebastian Kügler
Fibrillar αSynuclein is the major constituent of Lewy bodies and Lewy neurites, the protein deposits characteristic for Parkinson’s disease (PD). Multiplications of the αSynuclein gene, as well as point mutations cause familial PD. However, the exact role of αSynuclein in neurodegeneration remains uncertain. Recent research in invertebrates has suggested that oligomeric rather than fibrillizing αSynuclein mediates neurotoxicity. To investigate the impact of αSynuclein aggregation on the progression of neurodegeneration, we expressed variants with different fibrillation propensities in the rat substantia nigra (SN) by means of recombinant adeno-associated viral (AAV) vectors. The formation of proteinase K-resistant αSynuclein aggregates was correlated to the loss of nigral dopaminergic (DA) neurons and striatal fibers. Expression of two prefibrillar, structure-based design mutants of αSynuclein (i.e., A56P and A30P/A56P/A76P) resulted in less aggregate formation in nigral DA neurons as compared to human wild-type (WT) or the inherited A30P mutation. However, only the αSynuclein variants capable of forming fibrils (WT/A30P), but not the oligomeric αSynuclein species induced a sustained progressive loss of adult nigral DA neurons. These results demonstrate that divergent modes of αSynuclein neurotoxicity exist in invertebrate and mammalian DA neurons in vivo and suggest that fibrillation of αSynuclein promotes the progressive degeneration of nigral DA neurons as found in PD patients.
Neurochemistry International | 2006
Ana Raquel Santiago; Tiago Santos Pereira; Manuel Garrido; Armando J. Cristóvão; Paulo Santos; António F. Ambrósio
Several evidences suggest that glutamate may be involved in retinal neurodegeneration in diabetic retinopathy (DR). For that reason, we investigated whether high glucose or diabetes affect the accumulation and the release of [(3)H]-D-aspartate, which was used as a marker of the glutamate transmitter pool. The accumulation of [(3)H]-D-aspartate did not change in cultured retinal neural cells treated with high glucose (30 mM) for 7 days. However, the release of [(3)H]-D-aspartate, evoked by 50 mM KCl, significantly increased in retinal cells exposed to high glucose. Mannitol, which was used as an osmotic control, did not cause any significant changes in both accumulation and release of [(3)H]-D-aspartate. In the retinas, 1 week after the onset of diabetes, both the accumulation and release of [(3)H]-D-aspartate were unchanged comparing to the retinas of age-matched controls. However, after 4 weeks of diabetes, the accumulation of [(3)H]-D-aspartate in diabetic retinas decreased and the release of [(3)H]-D-aspartate increased, compared to age-matched control retinas. These results suggest that high glucose and diabetes increase the evoked release of D-aspartate in the retina, which may be correlated with the hypothesis of glutamate-induced retinal neurodegeneration in DR.
Acta Neuropathologica | 2011
Manuel Garrido; Yuliya Tereshchenko; Zinayida Zhevtsova; Grit Taschenberger; Mathias Bähr; Sebastian Kügler
Parkinson’s disease is a neurodegenerative disorder characterized by severe motor deficits mainly due to degeneration of dopaminergic neurons in the substantia nigra. Decreased levels of the cell’s most important anti-oxidant, glutathione, have been detected in nigral neurons of Parkinson patients, but it is unknown if they are the cause or merely the consequence of the disease. To elucidate if glutathione depletion causes selective degeneration of nigral dopaminergic neurons, we down-regulated glutathione synthesis in different brain areas of adult rats by a viral vector-based RNAi approach. Decreased glutathione synthesis resulted in progressive degeneration of nigral dopaminergic neurons, while extra-nigral and striatal neurons were significantly less vulnerable. Degeneration of dopaminergic neurons was accompanied by progressive protein aggregate formation and functional motor deficits and was partially rescued by α-synuclein. That the survival of nigral dopaminergic neurons depends on the precise control of glutathione levels was further demonstrated by significant degeneration induced through moderate overproduction of glutathione. Over-expression of either of the two subunits of glutamate–cysteine ligase induced aberrant glutathiolation of cellular proteins and significant degeneration of dopaminergic neurons. Thus, while glutathione depletion was demonstrated to be a selective trigger for dopaminergic neuron degeneration, a glutathione replacement approach as a potential treatment option for Parkinson’s patients must be considered with great care. In conclusion, our data demonstrate that survival of nigral dopaminergic neurons crucially depends on a tight regulation of their glutathione levels and that the depleted glutathione content detected in the brains of Parkinson’s disease patients can be a causative insult for neuronal degeneration.
PLOS ONE | 2011
Lígia Sousa-Ferreira; Manuel Garrido; Isabel Nascimento-Ferreira; Clévio Nóbrega; Ana Santos-Carvalho; Ana Rita Álvaro; Joana Rosmaninho-Salgado; Manuella P. Kaster; Sebastian Kügler; Luís Pereira de Almeida; Cláudia Cavadas
Neuropeptide Y (NPY) produced by arcuate nucleus (ARC) neurons has a strong orexigenic effect on target neurons. Hypothalamic NPY levels undergo wide-ranging oscillations during the circadian cycle and in response to fasting and peripheral hormones (from 0.25 to 10-fold change). The aim of the present study was to evaluate the impact of a moderate long-term modulation of NPY within the ARC neurons on food consumption, body weight gain and hypothalamic neuropeptides. We achieved a physiological overexpression (3.6-fold increase) and down-regulation (0.5-fold decrease) of NPY in the rat ARC by injection of AAV vectors expressing NPY and synthetic microRNA that target the NPY, respectively. Our work shows that a moderate overexpression of NPY was sufficient to induce diurnal over-feeding, sustained body weight gain and severe obesity in adult rats. Additionally, the circulating levels of leptin were elevated but the immunoreactivity (ir) of ARC neuropeptides was not in accordance (POMC-ir was unchanged and AGRP-ir increased), suggesting a disruption in the ability of ARC neurons to response to peripheral metabolic alterations. Furthermore, a dysfunction in adipocytes phenotype was observed in these obese rats. In addition, moderate down-regulation of NPY did not affect basal feeding or normal body weight gain but the response to food deprivation was compromised since fasting-induced hyperphagia was inhibited and fasting-induced decrease in locomotor activity was absent. These results highlight the importance of the physiological ARC NPY levels oscillations on feeding regulation, fasting response and body weight preservation, and are important for the design of therapeutic interventions for obesity that include the NPY.
American Journal of Pathology | 2010
Zinayida Shevtsova; Manuel Garrido; Jochen H. Weishaupt; Paul Saftig; Mathias Bähr; Fred Lühder; Sebastian Kügler
Deficiency in Cathepsin D (CtsD), the major cellular lysosomal aspartic proteinase, causes the congenital form of neuronal ceroid lipofuscinoses (NCLs). CtsD-deficient mice show severe visceral lesions like lymphopenia in addition to their central nervous system (CNS) phenotype of ceroid accumulation, microglia activation, and seizures. Here we demonstrate that re-expression of CtsD within the CNS but not re-expression of CtsD in visceral organs prevented both central and visceral pathologies of CtsD(-/-) mice. Our results suggest that CtsD was substantially secreted from CNS neurons and drained from CNS to periphery via lymphatic routes. Through this drainage, CNS-expressed CtsD acts as an important modulator of immune system maintenance and peripheral tissue homeostasis. These effects depended on enzymatic activity and not on proposed functions of CtsD as an extracellular ligand. Our results furthermore demonstrate that the prominent accumulation of ceroid/lipofuscin and activation of microglia in brains of CtsD(-/-) are not lethal factors but can be tolerated by the rodent CNS.
Gene Therapy | 2006
Zinayida Shevtsova; Ibrahim Malik; Manuel Garrido; Ulrike Schöll; Mathias Bähr; S. Kügler
To elucidate effective and long-lasting neuroprotective strategies, we analysed a combination of mitochondrial protection and neurotrophic support in two well-defined animal models of neurodegeneration, traumatic lesion of optic nerve and complete 6-hydroxydopamine (6-OHDA) lesion of nigrostriatal pathway. Neuroprotection by BclXL, Glial cell line-derived neurotrophic factor (GDNF) or BclXL plus GDNF co-expression were studied at 2 weeks and at 6–8 weeks after lesions. In both lesion paradigms, the efficacy of this combination approach significantly differed depending on post-lesion time. We show that BclXL expression is more important for neuronal survival in the early phase after lesions, whereas GDNF-mediated neuroprotection becomes more prominent in the advanced state of neurodegeneration. BclXL expression was not sufficient to finally inhibit degeneration of deafferentiated central nervous system neurons. Long-lasting GDNF-mediated neuroprotection depended on BclXL co-expression in the traumatic lesion paradigm, but was independent of BclXL in the 6-OHDA lesion model. The results demonstrate that neuroprotection studies in animal models of neurodegenerative diseases should generally be performed over extended periods of time in order to reveal the actual potency of a therapeutic approach.
Current Eye Research | 2010
Ana Raquel Santiago; Manuel Garrido; Armando J. Cristóvão; João M. N. Duarte; Rui A. Carvalho; António F. Ambrósio
Purpose/Aim of the study: Diabetic retinopathy (DR) is a leading cause of blindness in working age adults in developed countries. Changes in metabolites and in metabolic pathways of the retina caused by hyperglycemia may compromise the physiology of the retina. Using nuclear magnetic resonance (NMR) spectroscopy, we aimed to investigate the effect of diabetes on the levels of intermediate metabolites in rat retinas and the metabolic pathways that could be affected. Materials and Methods: Diabetes was induced in male Wistar rats with a single injection of streptozotocin (65 mg/Kg, i.p.). Metabolic alterations were analyzed in streptozotocin-induced diabetic rat retinas by 1H NMR spectroscopy. Glucose uptake was measured with 2-deoxy-d-[1-3H]glucose. Lactate production was evaluated by 1H NMR spectroscopy using [U-13C]glucose. Results: Tissue levels of several metabolic intermediates were quantified, but no significant changes in the levels of most metabolites were detected, with the exceptions of glucose, significantly increased, and lactate, significantly reduced in diabetic rat retinas, as compared to age-matched controls. The cytosolic redox ratio, indirectly evaluated by lactate-to-pyruvate ratio, was significantly reduced in diabetic rat retinas, as well as glucose uptake. Parallel studies demonstrated that lactate production rates were significantly diminished, suggesting a reduction in the glycolytic flux. Conclusions: These results suggest that diabetes may significantly decrease glycolysis in the retina since higher intracellular glucose levels do not translate into higher intracellular lactate levels or into higher rates of lactate production. These changes may alter the normal functioning of the retina during diabetes and may contribute for vision loss in DR.
Biochemical and Biophysical Research Communications | 2006
Ibrahim Malik; Manuel Garrido; Mathias Bähr; S. Kügler; Uwe Michel
Journal of Experimental Medicine | 2011
Petranka Krumova; Erik Meulmeester; Manuel Garrido; Marilyn Tirard; He-Hsuan Hsiao; Guillaume Bossis; Henning Urlaub; Markus Zweckstetter; Sebastian Kügler; Frauke Melchior; Mathias Bähr; Jochen H. Weishaupt