Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel J. Castro is active.

Publication


Featured researches published by Manuel J. Castro.


Mathematics of Computation | 2006

High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems

Manuel J. Castro; José M. Gallardo; Carlos Parés

This paper is concerned with the development of high order methods for the numerical approximation of one-dimensional nonconservative hyperbolic systems. In particular, we are interested in high order extensions of the generalized Roe methods introduced by I. Toumi in 1992, based on WENO reconstruction of states. We also investigate the well-balanced properties of the resulting schemes. Finally, we will focus on applications to shallow-water systems.


Journal of Computational Physics | 2007

On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas

José M. Gallardo; Carlos Parés; Manuel J. Castro

We present a finite volume scheme for solving shallow water equations with source term due to the bottom topography. The scheme has the following properties: it is high-order accurate in smooth wet regions, it correctly solves situations where dry areas are present, and it is well-balanced. The scheme is developed within a general nonconservative framework, and it is based on hyperbolic reconstructions of states. The treatment of wet/dry fronts is carried out by solving specific nonlinear Riemann problems at the corresponding intercells.


Journal of Scientific Computing | 2009

High Order Extensions of Roe Schemes for Two-Dimensional Nonconservative Hyperbolic Systems

Manuel J. Castro; Enrique D. Fernández-Nieto; A. M. Ferreiro; José A. García-Rodríguez; Carlos Parés

This paper is concerned with the development of well-balanced high order Roe methods for two-dimensional nonconservative hyperbolic systems. In particular, we are interested in extending the methods introduced in (Castro et al., Math. Comput. 75:1103–1134, 2006) to the two-dimensional case. We also investigate the well-balance properties and the consistency of the resulting schemes. We focus in applications to one and two layer shallow water systems.


Mathematical Models and Methods in Applied Sciences | 2007

Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique

Manuel J. Castro; Pardo Milan; Carlos Par

The goal of this paper is to generalize the hydrostatic reconstruction technique introduced in Ref. 2 for the shallow water system to more general hyperbolic systems with source term. The key idea is to interpret the numerical scheme obtained with this technique as a path-conservative method, as defined in Ref. 35. This generalization allows us, on the one hand, to construct well-balanced numerical schemes for new problems, as the two-layer shallow water system. On the other hand, we construct numerical schemes for the shallow water system with better well-balanced properties. In particular we obtain a Roe method which solves exactly every stationary solution, and not only those corresponding to water at rest.


Mathematics of Computation | 2009

On some fast well-balanced first order solvers for nonconservative systems

Manuel J. Castro; Alberto Pardo; Carlos Parés; Eleuterio F. Toro

The goal of this article is to design robust and simple first order explicit solvers for one-dimensional nonconservative hyperbolic systems. These solvers are intended to be used as the basis for higher order methods for one or multidimensional problems. The starting point for the development of these solvers is the general definition of a Roe linearization introduced by Toumi in 1992 based on the use of a family of paths. Using this concept, Roe methods can be extended to nonconservative systems. These methods have good well-balanced and robustness properties, but they have also some drawbacks: in particular, their implementation requires the explicit knowledge of the eigenstructure of the intermediate matrices. Our goal here is to design numerical methods based on a Roe linearization which overcome this drawback. The idea is to split the Roe matrices into two parts which are used to calculate the contributions at the cells to the right and to the left, respectively. This strategy is used to generate two different one-parameter families of schemes which contain, as particular cases, some generalizations to nonconservative systems of the well-known Lax-Friedrichs, Lax-Wendroff, FORCE, and GFORCE schemes. Some numerical experiments are presented to compare the behaviors of the schemes introduced here with Roe methods.


Mathematical Models and Methods in Applied Sciences | 2006

NUMERICAL TREATMENT OF WET/DRY FRONTS IN SHALLOW FLOWS WITH A MODIFIED ROE SCHEME

Manuel J. Castro; J. M. González-Vida; Carlos Parés

This paper deals with the analysis of some numerical difficulties related to the appearance of wet/dry fronts that may occur during the simulation of free-surface waves in shallow fluids. The fluid is supposed to be governed by the Shallow Water equations and the discretization of the equations is performed, when wet/dry fronts do not appear, by means of the Q-scheme of Roe upwinding the source terms introduced in Ref. 40. This scheme is well-balanced in the sense that it solves exactly stationary solutions corresponding to water at rest. Wet/dry fronts cannot be correctly treated with this scheme: it can produce negative values of the thickness of the fluid layer and stationary solutions corresponding to water at rest including wet/dry transitions are not exactly solved. In Refs. 3–5 some variants of this numerical scheme have been proposed that partially solve these difficulties. Here we propose a new variant: at intercells where wet/dry transitions occur, a Nonlinear Riemann Problem is considered instead of a Linear one. The exact solutions of these nonlinear problems, which are easy to calculate, are used in order to define the numerical fluxes. We investigate the properties of the resulting scheme and present some comparisons with the numerical results obtained with some other modified numerical schemes proposed previously.


The Journal of Supercomputing | 2011

Simulation of one-layer shallow water systems on multicore and CUDA architectures

Marc de la Asunción; José M. Mantas; Manuel J. Castro

The numerical solution of shallow water systems is useful for several applications related to geophysical flows, but the big dimensions of the domains suggests the use of powerful accelerators to obtain numerical results in reasonable times. This paper addresses how to speed up the numerical solution of a first order well-balanced finite volume scheme for 2D one-layer shallow water systems by using modern Graphics Processing Units (GPUs) supporting the NVIDIA CUDA programming model. An algorithm which exploits the potential data parallelism of this method is presented and implemented using the CUDA model in single and double floating point precision. Numerical experiments show the high efficiency of this CUDA solver in comparison with a CPU parallel implementation of the solver and with respect to a previously existing GPU solver based on a shading language.


Mathematics and Computers in Simulation | 2009

Simulation of shallow-water systems using graphics processing units

Miguel Lastra; José M. Mantas; Carlos Ureña; Manuel J. Castro; José A. García-Rodríguez

This paper addresses the speedup of the numerical solution of shallow-water systems in 2D domains by using modern graphics processing units (GPUs). A first order well-balanced finite volume numerical scheme for 2D shallow-water systems is considered. The potential data parallelism of this method is identified and the scheme is efficiently implemented on GPUs for one-layer shallow-water systems. Numerical experiments performed on several GPUs show the high efficiency of the GPU solver in comparison with a highly optimized implementation of a CPU solver.


SIAM Journal on Numerical Analysis | 2008

Well-Balanced High Order Extensions of Godunov's Method for Semilinear Balance Laws

Manuel J. Castro; José M. Gallardo; Juan A. López-García; Carlos Parés

This paper is concerned with the development of well-balanced high order numerical schemes for systems of balance laws with a linear flux function, whose coefficients may be variable. First, well-balanced first order numerical schemes are obtained based on the use of exact solvers of Riemann problems that include both the flux and the source terms. Godunovs methods so obtained are extended to higher order schemes by using a technique of reconstruction of states. The main contribution of this paper is to introduce a reconstruction technique that preserves the well-balanced property of Godunovs methods. Some numerical experiments are presented to verify in practice the properties of the developed numerical schemes.


Applied Mathematics and Computation | 2016

Approximate Osher-Solomon schemes for hyperbolic systems

Manuel J. Castro; José M. Gallardo; Antonio Marquina

This paper is concerned with a new kind of Riemann solvers for hyperbolic systems, which can be applied both in the conservative and nonconservative cases. In particular, the proposed schemes constitute a simple version of the classical Osher-Solomon Riemann solver, and extend in some sense the schemes proposed in Dumbser and Toro (2011) 19,20. The viscosity matrix of the numerical flux is constructed as a linear combination of functional evaluations of the Jacobian of the flux at several quadrature points. Some families of functions have been proposed to this end: Chebyshev polynomials and rational-type functions. Our schemes have been tested with different initial value Riemann problems for ideal gas dynamics, magnetohydrodynamics and multilayer shallow water equations. The numerical tests indicate that the proposed schemes are robust, stable and accurate with a satisfactory time step restriction, and provide an efficient alternative for approximating time-dependent solutions in which the spectral decomposition is computationally expensive.

Collaboration


Dive into the Manuel J. Castro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge