Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel J. Del Rey is active.

Publication


Featured researches published by Manuel J. Del Rey.


PLOS ONE | 2009

Immature Blood Vessels in Rheumatoid Synovium Are Selectively Depleted in Response to Anti-TNF Therapy

Elena Izquierdo; Juan D. Cañete; Raquel Celis; Begoña Santiago; Alicia Usategui; Raimon Sanmartí; Manuel J. Del Rey; José L. Pablos

Background Angiogenesis is considered an important factor in the pathogenesis of Rheumatoid Arthritis (RA) where it has been proposed as a therapeutic target. In other settings, active angiogenesis is characterized by pathologic, immature vessels that lack periendothelial cells. We searched for the presence of immature vessels in RA synovium and analyzed the dynamics of synovial vasculature along the course of the disease, particularly after therapeutic response to TNF antagonists. Methodology/Principal Findings Synovial arthroscopic biopsies from RA, osteoarthritis (OA) and normal controls were analyzed by double labeling of endothelium and pericytes/smooth muscle mural cells to identify and quantify mature/immature blood vessels. To analyze clinicopathological correlations, a cross-sectional study on 82 synovial biopsies from RA patients with variable disease duration and severity was performed. A longitudinal analysis was performed in 25 patients with active disease rebiopsied after anti-TNF-α therapy. We found that most RA synovial tissues contained a significant fraction of immature blood vessels lacking periendothelial coverage, whereas they were rare in OA, and inexistent in normal synovial tissues. Immature vessels were observed from the earliest phases of the disease but their presence or density was significantly increased in patients with longer disease duration, higher activity and severity, and stronger inflammatory cell infiltration. In patients that responded to anti-TNF-α therapy, immature vessels were selectively depleted. The mature vasculature was similarly expanded in early or late disease and unchanged by therapy. Conclusion/Significance RA synovium contains a significant fraction of neoangiogenic, immature blood vessels. Progression of the disease increases the presence and density of immature but not mature vessels and only immature vessels are depleted in response to anti-TNFα therapy. The different dynamics of the mature and immature vascular fractions has important implications for the development of anti-angiogenic interventions in RA.


Arthritis & Rheumatism | 2009

Human inflammatory synovial fibroblasts induce enhanced myeloid cell recruitment and angiogenesis through a hypoxia‐inducible transcription factor 1α/vascular endothelial growth factor–mediated pathway in immunodeficient mice

Manuel J. Del Rey; Elena Izquierdo; Sergio Caja; Alicia Usategui; Begoña Santiago; María Galindo; José L. Pablos

OBJECTIVE Hyperplasia and phenotypic changes in fibroblasts are often observed in chronic inflammatory lesions, and yet the autonomous pathogenic contribution of these changes is uncertain. The purpose of this study was to analyze the intrinsic ability of fibroblasts from chronically inflamed synovial tissue to drive cell recruitment and angiogenesis. METHODS Fibroblasts from patients with rheumatoid arthritis (RA) or osteoarthritis (OA), as well as fibroblasts from healthy synovial tissue and healthy skin, were cultured and subcutaneously engrafted into immunodeficient mice. Cell infiltration and angiogenesis were analyzed in the grafts by immunohistochemical studies. The role of vascular endothelial growth factor (VEGF), CXCL12, and hypoxia-inducible transcription factor 1alpha (HIF-1alpha) in these processes was investigated using specific antagonists or small interfering RNA (siRNA)-mediated down-regulation of HIF-1alpha in fibroblasts. RESULTS Inflammatory (OA and RA) synovial fibroblasts, compared with healthy dermal or synovial tissue fibroblasts, induced a significant enhancement in myeloid cell infiltration and angiogenesis in immunodeficient mice. These activities were associated with increased constitutive and hypoxia-induced expression of VEGF, but not CXCL12, in inflammatory fibroblasts compared with healthy fibroblasts. VEGF and CXCL12 antagonists significantly reduced myeloid cell infiltration and angiogenesis. Furthermore, targeting of HIF-1alpha expression by siRNA or of HIF-1alpha transcriptional activity by the small molecule chetomin in RA fibroblasts significantly reduced both responses. CONCLUSION These results demonstrate that chronic synovial inflammation is associated with stable fibroblast changes that, under hypoxic conditions, are sufficient to induce inflammatory cell recruitment and angiogenesis, both of which are processes relevant to the perpetuation of chronic inflammation.


Arthritis & Rheumatism | 2011

Synovial fibroblast hyperplasia in rheumatoid arthritis: Clinicopathologic correlations and partial reversal by anti–tumor necrosis factor therapy

Elena Izquierdo; Juan D. Cañete; Raquel Celis; Manuel J. Del Rey; Alicia Usategui; Sara Marsal; Raimon Sanmartí; Gabriel Criado; José L. Pablos

OBJECTIVE Synovial fibroblast (SF) hyperplasia contributes to the pathogenesis of rheumatoid arthritis (RA), but quantitative information on this process is scarce. This study was undertaken to evaluate the fibroblast-specific marker Hsp47 as a quantitative marker for SFs and to analyze its clinicopathologic correlates and evolution after anti-tumor necrosis factor α (anti-TNFα) therapy. METHODS Synovial biopsy samples were obtained from 48 patients with RA and 20 controls who were healthy or had osteoarthritis (OA). Twenty-five RA patients who had active disease at the time of biopsy underwent a second biopsy after anti-TNFα therapy. Immunolabeling for Hsp47, inflammatory cells, and vascular cell markers was performed. Hsp47-positive lining and sublining fractional areas were quantified, and their correlation with clinicopathologic variables was analyzed. RESULTS In normal and diseased synovial tissue, Hsp47 was specifically and uniformly expressed by lining, sublining, and perivascular fibroblasts. Lining SF area was significantly increased in both RA and late OA tissue compared to normal tissue. Sublining SF area was increased in RA tissue but not in late OA tissue compared to normal tissue. Lining SF area was positively correlated with macrophage density, Disease Activity Score in 28 joints, and RA disease duration. In contrast, sublining SF area was negatively correlated with RA disease duration and activity. A significant reduction in lining SF area but not sublining SF area was observed after anti-TNFα therapy. CONCLUSION Our findings indicate that Hsp47 is a reliable marker for quantifying SFs in human synovial tissue. Our data suggest that lining and sublining SFs undergo different dynamics during the course of the disease. Lining SF expansion parallels the activity and temporal progression of RA and can be partially reversed by anti-TNFα therapy.


Arthritis & Rheumatism | 2010

The Transcriptional Response of Normal and Rheumatoid Arthritis Synovial Fibroblasts to Hypoxia

Manuel J. Del Rey; Elena Izquierdo; Alicia Usategui; Elena Gonzalo; F.J. Blanco; Francesco Acquadro; José L. Pablos

OBJECTIVE Hypoxia is a prominent feature in rheumatoid arthritis (RA) synovium. However, its contribution to the pathogenesis of RA remains unclear. We undertook this study to systematically characterize the changes in gene expression induced by hypoxia in synovial fibroblasts. METHODS We used microarray expression profiling in paired normoxic and hypoxic cultures of healthy synovial fibroblasts (HSFs) and RA synovial fibroblasts (RASFs). We used Students paired t-test with Benjamini and Hochberg multiple testing correction to determine statistical significance. Validation of microarray data was performed by quantitative real-time reverse transcription-polymerase chain reaction analysis of selected genes. Biologic pathways differentially modulated by hypoxia in RASFs or HSFs were identified using unsupervised Ingenuity Pathways Analysis. RESULTS Hypoxia induced significant changes in the expression of a large group of genes in both HSFs and RASFs. In RASFs, we observed a lower number of hypoxia-regulated genes and partial differences in their functional categories. The number of differentially expressed genes in RASFs compared with HSFs was significantly increased by hypoxia. Multiple gene sets involved in energy metabolism, intracellular signal transduction, angiogenesis, and immune and inflammatory pathways were significantly modified, the last in both proinflammatory and antiinflammatory directions. CONCLUSION These data demonstrate that hypoxia induces significant changes in gene expression in HSFs and RASFs and identify differences between RASF and HSF profiles. The hypoxia-induced gene expression program in synovial fibroblasts identifies new factors and pathways relevant to understanding their contribution to the pathogenesis of chronic arthritis.


Annals of the Rheumatic Diseases | 2013

A profibrotic role for thymic stromal lymphopoietin in systemic sclerosis

Alicia Usategui; Gabriel Criado; Elena Izquierdo; Manuel J. Del Rey; Patricia Carreira; Pablo Ortiz; Warren J. Leonard; José L. Pablos

Objetive Systemic sclerosis (SSc) is an autoimmune disease characterised by progressive fibrosis. Although SSc shares pathogenetic features with other autoimmune diseases, the participation of profibrotic Th2 cytokines is unique to SSc, but the mechanisms of Th2 skewing are unknown. We have analysed the expression and function of thymic stromal lymphopoietin (TSLP), a central regulator of Th2-mediated allergic inflammation, in human SSc, primary lung fibrosis and in a mouse model of scleroderma. Methods TSLP expression was analysed by immunohistochemistry in human SSc skin, primary lung fibrosis and mouse bleomycin-induced skin fibrosis, and by quantitative RT-PCR in mouse skin and cultured fibroblasts. The regulation of TSLP expression by specific toll-like receptors (TLR)-2, -3 and -4 agonists was analysed in human dermal fibroblast cultures. The role of TSLP in skin fibrosis and local cytokine expression was analysed in TSLP receptor (TSLPR)-deficient mice. Results TSLP was overexpressed by epithelial cells, mast cells and fibroblasts in human SSc skin and lung fibrosis, and in the bleomycin model of scleroderma. In cultured human and mouse skin fibroblasts, TSLP expression was inducible by activation of TLR, particularly TLR3. In TSLPR-deficient mice, bleomycin-induced fibrosis was significantly reduced in parallel with significantly reduced local expression of IL-13. Conclusions These data provide the first evidence of TSLP overexpression in SSc and other non-allergic fibrotic conditions, and demonstrate a profibrotic role that is potentially meditated by specific changes in the local cytokine milieu. Thus, modulating TSLP may have antifibrotic therapeutic implications.


PLOS ONE | 2014

Clinicopathological Correlations of Podoplanin (gp38) Expression in Rheumatoid Synovium and Its Potential Contribution to Fibroblast Platelet Crosstalk

Manuel J. Del Rey; Regina Faré; Elena Izquierdo; Alicia Usategui; José Rodríguez-Fernández; Abel Suárez-Fueyo; Juan D. Cañete; José L. Pablos

Introduction Synovial fibroblasts (SF) undergo phenotypic changes in rheumatoid arthritis (RA) that contribute to inflammatory joint destruction. This study was undertaken to evaluate the clinical and functional significance of ectopic podoplanin (gp38) expression by RA SF. Methods Expression of gp38 and its CLEC2 receptor was analyzed by immunohistochemistry in synovial arthroscopic biopsies from RA patients and normal and osteoarthritic controls. Correlation between gp38 expression and RA clinicopathological variables was analyzed. In patients rebiopsied after anti-TNF-α therapy, changes in gp38 expression were determined. Platelet-SF coculture and gp38 silencing in SF were used to analyze the functional contribution of gp38 to SF migratory and invasive properties, and to SF platelet crosstalk. Results gp38 was abundantly but variably expressed in RA, and it was undetectable in normal synovial tissues. Among clinicopathologigal RA variables, significantly increased gp38 expression was only found in patients with lymphoid neogenesis (LN), and RF or ACPA autoantibodies. Cultured synovial but not dermal fibroblasts showed strong constitutive gp38 expression that was further induced by TNF-α. In RA patients, anti-TNF-α therapy significantly reduced synovial gp38 expression. In RA synovium, CLEC2 receptor expression was only observed in platelets. gp38 silencing in cultured SF did not modify their migratory and invasive properties but reduced the expression of IL-6 and IL-8 genes induced by SF-platelet interaction. Conclusions In RA, synovial expression of gp38 is strongly associated to LN and it is reduced after anti-TNF-α therapy. Interaction between gp38 and CLEC2 platelet receptor is feasible in RA synovium in vivo and can specifically contribute to gene expression by SF.


Annals of the Rheumatic Diseases | 2012

Transcriptome analysis reveals specific changes in osteoarthritis synovial fibroblasts

Manuel J. Del Rey; Alicia Usategui; Elena Izquierdo; Juan D. Cañete; F.J. Blanco; Gabriel Criado; José L. Pablos

Objective Changes in rheumatoid arthritis synovial fibroblast (RASF) gene expression are usually defined by a comparison to osteoarthritis synovial fibroblasts (OASFs). This study was undertaken to analyse the transcriptome of OASFs as compared to RASFs and healthy synovial fibroblasts (HSFs). Methods The authors used microarray messenger RNA expression profiling of synovial fibroblasts cultured from osteoarthritis (OA), rheumatoid arthritis and normal synovial tissues. Quantitative real-time PCR of selected genes was performed to validate microarray data. Analysis of variance, Student t test and the Benjamini–Hochberg multiple testing correction method for multiple testing correction were used to determine the statistical significance of the changes between the three groups. Results Larger numbers of transcripts showed a differential expression in OASFs versus the other groups, rather than in RASFs versus HSFs. Cluster analysis confirmed that the differences between the three groups were mostly due to the differences between OA and the other groups. Functional classification identified a significant number of genes related to growth factor activities, cell adhesion, neurotransmission and Ras signalling that are differentially expressed in OASFs. Classical proinflammatory factors or proteases involved in cartilage degradation were not found to be overexpressed in OASFs. Conclusion Cultured OASFs display a more homogeneous transcriptomic profile than RASFs when compared to HSFs. This supports the participation of synovial fibroblasts in the pathogenesis of OA and may reflect global defects in the mesenchyma-derived lineages of the different tissues in OA joints. These data support individual heterogeneity among RASFs and advise against the use of OASFs as controls.


Expert Review of Clinical Immunology | 2011

Fibroblast abnormalities in the pathogenesis of systemic sclerosis

Alicia Usategui; Manuel J. Del Rey; José L. Pablos

Systemic sclerosis (SSc) is a chronic systemic disease characterized by autoimmunity, vascular lesions and progressive fibrosis. The fibrotic component is dominant in SSc compared with other vascular or autoimmune diseases and determines its prognosis and therapeutic refractoriness. Fibroblasts are responsible for abnormal extracellular matrix accumulation. Studies in cultured SSc skin fibroblasts have facilitated the identification of potential pathways involved in their profibrotic phenotype. Profibrotic fibroblasts characterized by abnormal growth and extracellular matrix synthesis may differentiate or expand from normal resident fibroblasts. Recruitment of bone marrow-derived progenitors and transdifferentiation of different cell lineages might also be involved. Multiple factors and signaling pathways appear to be involved in the development or persistence of the SSc fibroblast phenotype. Although their relative relevance and interplay are unclear, aberrant TGF-β signaling seems pivotal and constitutes the best characterized therapeutic target.


Arthritis & Rheumatism | 2012

CXCL12γ isoform is expressed on endothelial and dendritic cells in rheumatoid arthritis synovium and regulates T cell activation

Begoña Santiago; Elena Izquierdo; Patricia Rueda; Manuel J. Del Rey; Gabriel Criado; Alicia Usategui; Fernando Arenzana-Seisdedos; José L. Pablos

OBJECTIVE CXCL12γ is an alternative splicing isoform of CXCL12 with enhanced affinity for heparan sulfate (HS) proteoglycans. This study was undertaken to investigate the distribution and potential function of CXCL12γ in rheumatoid arthritis (RA) synovium and normal lymphoid tissue, where its immobilization to HS may be relevant in pathologic or homeostatic immune cell migration and activation. METHODS Expression of CXCL12 or CXCL12γ was immunodetected in RA and normal synovium, lymphoid tissue, and cultured cells with anti-pan-CXCL12 or anti-CXCL12γ-specific monoclonal antibodies. CXCL12α and CXCL12γ messenger RNA expression was analyzed by quantitative reverse transcription-polymerase chain reaction. Binding of wild-type CXCL12 isoforms or their HS binding-defective mutants to monocyte-derived dendritic cells (DCs) was analyzed by flow cytometry. The effect of DC-bound CXCL12α and CXCL12γ on T cell activation was analyzed in DC/T cell allogeneic cultures. RESULTS CXCL12γ expression was increased in RA compared to normal synovium and preferentially located in endothelia and DC-SIGN-positive cells. This distribution was also observed in lymphoid organs. Surface-bound CXCL12γ was detected in a fraction of freshly isolated DCs. Monocyte-derived DCs, but not monocytes, showed a high capacity to bind CXCL12γ in an HS-dependent manner. Surface-bound CXCL12α and CXCL12γ on monocyte-derived DCs were potent inhibitors of allogeneic T cell activation, in contrast to the T cell-stimulatory effects of soluble CXCL12 proteins. CONCLUSION CXCL12γ shows a specific and similar distribution in RA synovium and lymphoid tissue, consistent with its higher HS binding affinity. Presentation of CXCL12 to T cells on membrane HS in DCs can play a distinct regulatory role in T cell activation.


Archives of Dermatological Research | 2014

Topical vitamin D analogue calcipotriol reduces skin fibrosis in experimental scleroderma

Alicia Usategui; Gabriel Criado; Manuel J. Del Rey; Regina Faré; José L. Pablos

Vitamin D analogues can reduce TGF-β pro-fibrotic signaling in dermal fibroblasts, but they may also induce a potentially pro-fibrotic thymic stromal lymphopoietin (TSLP)-dependent Th2 cytokine local response. We have analyzed the net effect of topical vitamin D analogue calcipotriol (CPT) on the cytokine profile and the development of fibrosis in experimental model of bleomycin-induced fibrosis. Mice were simultaneously treated with topical CPT or vehicle cream and skin fibrosis was measured by collagen deposition, Masson’s trichrome staining and hydroxyproline content. Cytokine and TSLP gene expression was evaluated by quantitative RT-PCR. We showed that in bleomycin injected skin, CPT administration significantly enhanced TSLP and IL-13 gene expression, but did not modify the expression of other cytokines. Skin fibrosis and hydroxyproline content were significantly reduced in CPT compared to vehicle-treated mice. In normal skin, topical administration of CPT lacked a direct pro-fibrotic effect. Our results demonstrate that topical CPT superinduces the expression of the TSLP/IL-13 Th2 axis in fibrotic skin, but it has a net anti-fibrotic effect. These data support the therapeutic use of topical vitamin D analogues for skin fibrosis.

Collaboration


Dive into the Manuel J. Del Rey's collaboration.

Top Co-Authors

Avatar

Alicia Usategui

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

José L. Pablos

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Elena Izquierdo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Begoña Santiago

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

María Galindo

University Hospital Complex Of Vigo

View shared research outputs
Top Co-Authors

Avatar

F.J. Blanco

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Gabriel Criado

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Gabriel Criado

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Gabriel Criado

University of Western Ontario

View shared research outputs
Researchain Logo
Decentralizing Knowledge