Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel L. Penichet is active.

Publication


Featured researches published by Manuel L. Penichet.


Biochimica et Biophysica Acta | 2012

The transferrin receptor and the targeted delivery of therapeutic agents against cancer

Tracy R. Daniels; Ezequiel Bernabeu; Jose A. Rodriguez; Shabnum Patel; Maggie Kozman; Diego A. Chiappetta; Eggehard Holler; Julia Y. Ljubimova; Gustavo Helguera; Manuel L. Penichet

BACKGROUND Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. SCOPE OF REVIEW In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. MAJOR CONCLUSIONS Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. GENERAL SIGNIFICANCE The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. This article is part of a Special Issue entitled Transferrins: molecular mechanisms of iron transport and disorders.


Allergy | 2008

AllergoOncology: the role of IgE-mediated allergy in cancer

Erika Jensen-Jarolim; Gernot Achatz; M. C. Turner; Sophia N. Karagiannis; F Legrand; M. Capron; Manuel L. Penichet; Jose A. Rodriguez; Antonio G. Siccardi; Luca Vangelista; A B Riemer; Hannah J. Gould

Epidemiological studies have suggested inverse associations between allergic diseases and malignancies. As a proof of concept for the capability of immunoglobulin E (IgE) to destruct tumor cells, several experimental strategies have evolved to specifically target this antibody class towards relevant tumor antigens. It could be demonstrated that IgE antibodies specific to overexpressed tumor antigens have been superior to any other immunoglobulin class with respect to antibody‐dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP) reactions. In an alternative approach, IgE nonspecifically attached to tumor cells proved to be a powerful adjuvant establishing tumor‐specific immune memory. Active Th2 immunity could also be achieved by applying an oral immunization regimen using mimotopes, i.e. epitope mimics of tumor antigens. The induced IgE antibodies could be cross‐linked by live tumor cells leading to tumoricidic mediator release. Thus, IgE antibodies may not only act in natural tumor surveillance, but could possibly also be exploited for tumor control in active and passive immunotherapy settings. Thereby, eosinophils, mast cells and macrophages can be armed with the cytophilic IgE and become potent anti‐tumor effectors, able to trace viable tumor cells in the tissues. It is strongly suggested that the evolving new field AllergoOncology will give new insights into the role of IgE‐mediated allergy in malignancies, possibly opening new avenues for tumor therapy.


Breast Cancer Research | 2009

Leptin-Signaling Inhibition Results in Efficient Anti-Tumor Activity in Estrogen Receptor Positive or Negative Breast Cancer

Ruben Rene Gonzalez; Amber Watters; Yanbo Xu; Udai P. Singh; David R. Mann; Bo R. Rueda; Manuel L. Penichet

IntroductionWe have shown previously that treatment with pegylated leptin peptide receptor antagonist 2 (PEG-LPrA2) reduced the expression of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor type 2 (VEGFR2) and growth of 4T1-breast cancer (BC) in syngeneic mice. In this investigation, PEG-LPrA2 was used to evaluate whether the inhibition of leptin signaling has differential impact on the expression of pro-angiogenic and pro-proliferative molecules and growth of human estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) BC xenografts hosted by immunodeficient mice.MethodsTo test the contribution of leptin signaling to BC growth and expression of leptin-targeted molecules, PEG-LPrA2 treatment was applied to severe immunodeficient mice hosting established ER+ (MCF-7 cells; ovariectomized/supplemented with estradiol) and ER- (MDA-MB231 cells) BC xenografts. To further assess leptin and PEG-LPrA2 effects on ER+ and ER- BC, the expression of VEGF and VEGFR2 (protein and mRNA) was investigated in cell cultures.ResultsPEG-LPrA2 more effectively reduced the growth of ER+ (>40-fold) than ER- BC (twofold) and expression of pro-angiogenic (VEGF/VEGFR2, leptin/leptin receptor OB-R, and IL-1 receptor type I) and pro-proliferative molecules (proliferating cell nuclear antigen and cyclin D1) in ER+ than in ER- BC. Mouse tumor stroma in ER+ BC expressed high levels of VEGF and leptin that was induced by leptin signaling. Leptin upregulated the transcriptional expression of VEGF/VEGFR2 in MCF-7 and MDA-MB231 cells.ConclusionsThese results suggest that leptin signaling plays an important role in the growth of both ER+ and ER- BC that is associated with the leptin regulation of pro-angiogenic and pro-proliferative molecules. These data provide support for the potential use of leptin-signaling inhibition as a novel treatment for ER+ and ER- BC.


Journal of Immunology | 2000

Recombinant Anti-Human HER2/neu IgG3-(GM-CSF) Fusion Protein Retains Antigen Specificity and Cytokine Function and Demonstrates Antitumor Activity

Jay S. Dela Cruz; K. Ryan Trinh; Sherie L. Morrison; Manuel L. Penichet

Anti-HER2/neu therapy of human HER2/neu-expressing malignancies such as breast cancer has shown only partial success in clinical trials. To expand the clinical potential of this approach, we have genetically engineered an anti-HER2/neu IgG3 fusion protein containing GM-CSF. Anti-HER2/neu IgG3-(GM-CSF) expressed in myeloma cells was correctly assembled and secreted. It was able to target HER2/neu-expressing cells and to support growth of a GM-CSF-dependent murine myeloid cell line, FDC-P1. The Ab fusion protein activated J774.2 macrophage cells so that they exhibit an enhanced cytotoxic activity and was comparable to the parental Ab in its ability to effect Ab-dependent cellular cytotoxicity-mediated tumor cell lysis. Pharmacokinetic studies showed that anti-HER2/neu IgG3-(GM-CSF) is stable in the blood. Interestingly, the half-life of anti-HER2/neu IgG3-(GM-CSF) depended on the injected dose with longer in vivo persistence observed at higher doses. Biodistribution studies showed that anti-HER2/neu IgG3-(GM-CSF) is mainly localized in the spleen. In addition, anti-HER2/neu IgG3-(GM-CSF) was able to target the HER2/neu-expressing murine tumor CT26-HER2/neu and enhance the immune response against the targeted Ag HER2/neu. Anti-HER2/neu IgG3-(GM-CSF) is able to enhance both Th1- and Th2-mediated immune responses and treatment with this Ab fusion protein resulted in significant retardation in the growth of s.c. CT26-HER2/neu tumors. Our results suggest that anti-HER2/neu IgG3-(GM-CSF) fusion protein is useful in the treatment of HER2/neu-expressing tumors.


Proceedings of the National Academy of Sciences of the United States of America | 2002

An anti-transferrin receptor-avidin fusion protein exhibits both strong proapoptotic activity and the ability to deliver various molecules into cancer cells.

Patrick P. Ng; Jay S. Dela Cruz; David N. Sorour; James M. Stinebaugh; Seung Uon Shin; Daniel S. Shin; Sherie L. Morrison; Manuel L. Penichet

We have developed an antibody fusion protein (anti-rat TfR IgG3-Av) with the ability to deliver different molecules into cancer cells. It consists of avidin genetically fused to the CH3 region of a human IgG3 specific for the rat transferrin receptor. It forms strong, noncovalent interactions with biotinylated molecules such as glucose oxidase and β-galactosidase, and delivers them into the rat myeloma cell line Y3-Ag1.2.3 through receptor-mediated endocytosis. Importantly, the β-galactosidase retains activity after internalization. Furthermore, we have unexpectedly discovered that anti-rat TfR IgG3-Av, but not a recombinant anti-rat TfR IgG3 or a nonspecific IgG3-Av, possesses proapoptotic activities against Y3-Ag1.2.3 and the rat T cell lymphoma cell line C58 (NT) D.1.G.OVAR.1. These activities were not observed in two rat cell lines of nonhematopoietic lineage (bladder carcinoma BC47 and gliosarcoma 9L). Anti-human TfR IgG3-Av also demonstrated proapoptotic activity against the human erythroleukemia cell line K562. Studies showed that anti-rat TfR IgG3-Av exists as a dimer, suggesting that cross-linking of the surface transferrin receptor may be responsible for the cytotoxic activity. These findings demonstrate that it is possible to transform an antibody specific for a growth factor receptor that does not exhibit inhibitory activity into a drug with significant intrinsic cytotoxic activity against selected cells by fusing it with avidin. The antitumor activity may be enhanced by delivering biotinylated therapeutics into cancer cells. Further development of this technology may lead to effective therapeutics for in vivo eradication of hematological malignancies, and ex vivo purging of cancer cells in autologous transplantation.


Journal of Immunology | 2008

Inhibition of Yin Yang 1-Dependent Repressor Activity of DR5 Transcription and Expression by the Novel Proteasome Inhibitor NPI-0052 Contributes to its TRAIL-Enhanced Apoptosis in Cancer Cells

Stavroula Baritaki; Eriko Suzuki; Kazuo Umezawa; Demetrios A. Spandidos; James R. Berenson; Tracy R. Daniels; Manuel L. Penichet; Ali R. Jazirehi; Michael A. Palladino; Benjamin Bonavida

TRAIL promotes apoptotic tumor cell death; however, TRAIL-resistant tumors need to be sensitized to reverse resistance. Proteasome inhibitors potentiate TRAIL apoptosis in vitro and in vivo and correlate with up-regulation of death receptor 5 (DR5) via an unknown mechanism. We hypothesized that the proteasome inhibitor NPI-0052 inhibits the transcription repressor Yin Yang 1 (YY1) which regulates TRAIL resistance and negatively regulates DR5 transcription. Treatment of PC-3 and Ramos cells with NPI-0052 (≤2.5 nM) and TRAIL sensitizes the tumor cells to TRAIL-induced apoptosis. By comparison to bortezomib, a 400-fold less concentration of NPI-0052 was used. NPI-0052 up-regulated DR5 reporter activity and both surface and total DR5 protein expression. NPI-0052-induced inhibition of NF-κB activity was involved in TRAIL sensitization as corroborated by the use of the NF-κB inhibitor dehydroxymethylepoxyquinomicin. NPI-0052 inhibited YY1 promoter activity as well as both YY1 mRNA and protein expression. The direct role of NPI-0052-induced inhibition of YY1 and up-regulation of DR5 in the regulation of TRAIL sensitivity was demonstrated by the use of YY1 small interfering RNA. The NPI-0052-induced sensitization to TRAIL involved activation of the intrinsic apoptotic pathway and dysregulation of genes that regulate apoptosis. The NPI-0052 concentrations used for TRAIL sensitization were not toxic to human hematopoetic stem cells. The present findings demonstrate, for the first time, the potential mechanism by which a proteasome inhibitor, like NPI-0052, inhibits the transcription repressor YY1 involved in TRAIL resistance and DR5 regulation. The findings also suggest the therapeutic application of subtoxic NPI-0052 concentrations in combination with TRAIL/agonist DR4/DR5 mAbs in the treatment of TRAIL-resistant tumors.


Journal of Immunological Methods | 2002

Myeloma expression systems.

Esther M. Yoo; Koteswara R. Chintalacharuvu; Manuel L. Penichet; Sherie L. Morrison

Myeloma expression systems have been utilized successfully for the production of various recombinant proteins. In particular, myeloma cell lines have been exploited to express a variety of different antibodies for diagnostic applications as well as in the treatment of various human diseases. The use of myeloma cells for antibody production is advantageous because they are professional immunoglobulin-secreting cells and are able to make proper post-translational modifications. Proper glycosylation has been shown to be important for antibody function. Advances in genetic engineering and molecular biology techniques have made it possible to isolate murine and human variable regions of almost any desired specificity. Antibodies and antibody variants produced in myeloma cells have been extremely helpful in elucidating the amino acid residues and structural motifs that contribute to antibody function. Because of their domain nature, immunoglobulin genes can be easily manipulated to produce chimeric or humanized antibodies. These antibodies are less immunogenic in humans and also retain their specificity for antigen and biologic properties. In addition, novel proteins in which antibodies are fused to non-immunoglobulin sequences as well as secretory IgA have been produced in myeloma cells.


Vaccine | 2003

Protein vaccination with the HER2/neu extracellular domain plus anti-HER2/neu antibody-cytokine fusion proteins induces a protective anti-HER2/neu immune response in mice.

Jay S. Dela Cruz; Suk Ying Lau; Ernesto M Ramirez; Carla De Giovanni; Guido Forni; Sherie L. Morrison; Manuel L. Penichet

Previously protein vaccines consisting of the extracellular domain of HER2/neu (ECD(HER2)) were shown to elicit an immune response that does not provide protection against transplantable tumors expressing HER2/neu. Here, we showed that when mice were vaccinated with a mixture of human ECD(HER2) and anti-human HER2/neu IL-12, IL-2 or GM-CSF fusion proteins, significant retardation of the growth of a syngeneic carcinoma expressing rat HER2/neu, and long-term survivors were observed. Immune sera inhibited the in vitro growth of SK-BR-3, a human breast cancer overexpressing HER2/neu. Transfer of immune sera into mice challenged with TUBO also led to partial inhibition of tumor growth. Splenocytes from mice vaccinated with ECD(HER2) plus IgG3-(GM-CSF) incubated with ECD(HER2) demonstrated significant proliferation and IFN-gamma secretion. Taken together these results suggest that vaccines including ECD(HER2) and Ab-cytokine fusion proteins may be used to elicit both humoral and cell-mediated responses against HER2/neu.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Propulsion of African trypanosomes is driven by bihelical waves with alternating chirality separated by kinks.

José A. Rodriguez; Miguel Lopez; Michelle Thayer; Yunzhe Zhao; Michael Oberholzer; Donald D. Chang; Neville K. Kisalu; Manuel L. Penichet; Gustavo Helguera; Robijn Bruinsma; Kent L. Hill; Jianwei Miao

Trypanosoma brucei, a parasitic protist with a single flagellum, is the causative agent of African sleeping sickness. Propulsion of T. brucei was long believed to be by a drill-like, helical motion. Using millisecond differential interference-contrast microscopy and analyzing image sequences of cultured procyclic-form and bloodstream-form parasites, as well as bloodstream-form cells in infected mouse blood, we find that, instead, motility of T. brucei is by the propagation of kinks, separating left-handed and right-handed helical waves. Kink-driven motility, previously encountered in prokaryotes, permits T. brucei a helical propagation mechanism while avoiding the large viscous drag associated with a net rotation of the broad end of its tapering body. Our study demonstrates that millisecond differential interference-contrast microscopy can be a useful tool for uncovering important short-time features of microorganism locomotion.


Expert Opinion on Biological Therapy | 2008

Antibody-cytokine fusion proteins: applications in cancer therapy

Elizabeth Ortiz-Sánchez; Gustavo Helguera; Tracy R. Daniels; Manuel L. Penichet

Background: Antibody–cytokine fusion proteins consist of cytokines fused to an antibody to improve antibody-targeted cancer immunotherapy. These molecules have the capacity to enhance the tumoricidal activity of the antibodies and/or activate a secondary antitumor immune response. Objective: To review the strategies used to develop antibody–cytokine fusion proteins and their in vitro and in vivo properties, including preclinical and clinical studies focusing on IL-2, IL-12 and GM-CSF. Methods: Articles were found by searching databases such as PubMed and Clinical Trials of the US National Institutes of Health. Results/conclusion: Multiple antibody–cytokine fusion proteins have demonstrated significant antitumor activity as direct therapeutics or as adjuvants of cancer vaccines in preclinical studies, paving the way for their clinical evaluation.

Collaboration


Dive into the Manuel L. Penichet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lai Sum Leoh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge