Manuel Martínez-García
University of Alicante
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manuel Martínez-García.
Science | 2011
Brandon K. Swan; Manuel Martínez-García; Christina M. Preston; Alexander Sczyrba; Tanja Woyke; Dominique Lamy; Thomas Reinthaler; Nicole J. Poulton; E. Dashiell P. Masland; Monica Lluesma Gomez; Michael E. Sieracki; Edward F. DeLong; Gerhard J. Herndl; Ramunas Stepanauskas
Bacteria isolated from a deep seawater mass seem to fix carbon using energy from the oxidation of inorganic sulfur. Recent studies suggest that unidentified prokaryotes fix inorganic carbon at globally significant rates in the immense dark ocean. Using single-cell sorting and whole-genome amplification of prokaryotes from two subtropical gyres, we obtained genomic DNA from 738 cells representing most cosmopolitan lineages. Multiple cells of Deltaproteobacteria cluster SAR324, Gammaproteobacteria clusters ARCTIC96BD-19 and Agg47, and some Oceanospirillales from the lower mesopelagic contained ribulose-1,5-bisphosphate carboxylase-oxygenase and sulfur oxidation genes. These results corroborated community DNA and RNA profiling from diverse geographic regions. The SAR324 genomes also suggested C1 metabolism and a particle-associated life-style. Microautoradiography and fluorescence in situ hybridization confirmed bicarbonate uptake and particle association of SAR324 cells. Our study suggests potential chemolithoautotrophy in several uncultured Proteobacteria lineages that are ubiquitous in the dark oxygenated ocean and provides new perspective on carbon cycling in the ocean’s largest habitat.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Brandon K. Swan; Ben Tupper; Alexander Sczyrba; Federico M. Lauro; Manuel Martínez-García; José M. González; Haiwei Luo; Jody J. Wright; Zachary C. Landry; Niels W. Hanson; Brian Thompson; Nicole J. Poulton; Patrick Schwientek; Silvia G. Acinas; Stephen J. Giovannoni; Mary Ann Moran; Steven J. Hallam; Ricardo Cavicchioli; Tanja Woyke; Ramunas Stepanauskas
Planktonic bacteria dominate surface ocean biomass and influence global biogeochemical processes, but remain poorly characterized owing to difficulties in cultivation. Using large-scale single cell genomics, we obtained insight into the genome content and biogeography of many bacterial lineages inhabiting the surface ocean. We found that, compared with existing cultures, natural bacterioplankton have smaller genomes, fewer gene duplications, and are depleted in guanine and cytosine, noncoding nucleotides, and genes encoding transcription, signal transduction, and noncytoplasmic proteins. These findings provide strong evidence that genome streamlining and oligotrophy are prevalent features among diverse, free-living bacterioplankton, whereas existing laboratory cultures consist primarily of copiotrophs. The apparent ubiquity of metabolic specialization and mixotrophy, as predicted from single cell genomes, also may contribute to the difficulty in bacterioplankton cultivation. Using metagenome fragment recruitment against single cell genomes, we show that the global distribution of surface ocean bacterioplankton correlates with temperature and latitude and is not limited by dispersal at the time scales required for nucleotide substitution to exceed the current operational definition of bacterial species. Single cell genomes with highly similar small subunit rRNA gene sequences exhibited significant genomic and biogeographic variability, highlighting challenges in the interpretation of individual gene surveys and metagenome assemblies in environmental microbiology. Our study demonstrates the utility of single cell genomics for gaining an improved understanding of the composition and dynamics of natural microbial assemblages.
The ISME Journal | 2012
Manuel Martínez-García; Brandon K. Swan; Nicole J. Poulton; Monica Lluesma Gomez; Dashiell Masland; Michael E. Sieracki; Ramunas Stepanauskas
Recent discoveries suggest that photoheterotrophs (rhodopsin-containing bacteria (RBs) and aerobic anoxygenic phototrophs (AAPs)) and chemoautotrophs may be significant for marine and freshwater ecosystem productivity. However, their abundance and taxonomic identities remain largely unknown. We used a combination of single-cell and metagenomic DNA sequencing to study the predominant photoheterotrophs and chemoautotrophs inhabiting the euphotic zone of temperate, physicochemically diverse freshwater lakes. Multi-locus sequencing of 712 single amplified genomes, generated by fluorescence-activated cell sorting and whole genome multiple displacement amplification, showed that most of the cosmopolitan freshwater clusters contain photoheterotrophs. These comprised at least 10–23% of bacterioplankton, and RBs were the dominant fraction. Our data demonstrate that Actinobacteria, including clusters acI, Luna and acSTL, are the predominant freshwater RBs. We significantly broaden the known taxonomic range of freshwater RBs, to include Alpha-, Beta-, Gamma- and Deltaproteobacteria, Verrucomicrobia and Sphingobacteria. By sequencing single cells, we found evidence for inter-phyla horizontal gene transfer and recombination of rhodopsin genes and identified specific taxonomic groups involved in these evolutionary processes. Our data suggest that members of the ubiquitous betaproteobacteria Polynucleobacter spp. are the dominant AAPs in temperate freshwater lakes. Furthermore, the RuBisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase) gene was found in several single cells of Betaproteobacteria, Bacteroidetes and Gammaproteobacteria, suggesting that chemoautotrophs may be more prevalent among aerobic bacterioplankton than previously thought. This study demonstrates the power of single-cell DNA sequencing addressing previously unresolved questions about the metabolic potential and evolutionary histories of uncultured microorganisms, which dominate most natural environments.
PLOS ONE | 2012
Manuel Martínez-García; David M. Brazel; Brandon K. Swan; Carol Arnosti; Patrick Chain; Krista G. Reitenga; Gary Xie; Nicole J. Poulton; Monica Lluesma Gomez; Dashiell Masland; Brian Thompson; Wendy K. Bellows; Kai Ziervogel; Chien Chi Lo; Sanaa Ahmed; Cheryl D. Gleasner; Chris Detter; Ramunas Stepanauskas
Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation.
PLOS ONE | 2011
Emily J. Fleming; Amy E. Langdon; Manuel Martínez-García; Ramunas Stepanauskas; Nicole J. Poulton; E. Dashiell P. Masland; David Emerson
Leptothrix ochracea is a common inhabitant of freshwater iron seeps and iron-rich wetlands. Its defining characteristic is copious production of extracellular sheaths encrusted with iron oxyhydroxides. Surprisingly, over 90% of these sheaths are empty, hence, what appears to be an abundant population of iron-oxidizing bacteria, consists of relatively few cells. Because L. ochracea has proven difficult to cultivate, its identification is based solely on habitat preference and morphology. We utilized cultivation-independent techniques to resolve this long-standing enigma. By selecting the actively growing edge of a Leptothrix-containing iron mat, a conventional SSU rRNA gene clone library was obtained that had 29 clones (42% of the total library) related to the Leptothrix/Sphaerotilus group (≤96% identical to cultured representatives). A pyrotagged library of the V4 hypervariable region constructed from the bulk mat showed that 7.2% of the total sequences also belonged to the Leptothrix/Sphaerotilus group. Sorting of individual L. ochracea sheaths, followed by whole genome amplification (WGA) and PCR identified a SSU rRNA sequence that clustered closely with the putative Leptothrix clones and pyrotags. Using these data, a fluorescence in-situ hybridization (FISH) probe, Lepto175, was designed that bound to ensheathed cells. Quantitative use of this probe demonstrated that up to 35% of microbial cells in an actively accreting iron mat were L. ochracea. The SSU rRNA gene of L. ochracea shares 96% homology with its closet cultivated relative, L. cholodnii, This establishes that L. ochracea is indeed related to this group of morphologically similar, filamentous, sheathed microorganisms.
The ISME Journal | 2013
Sarahi L. Garcia; Katherine D. McMahon; Manuel Martínez-García; Abhishek Srivastava; Alexander Sczyrba; Ramunas Stepanauskas; Hans-Peter Grossart; Tanja Woyke; Falk Warnecke
Actinobacteria within the acI lineage are often numerically dominating in freshwater ecosystems, where they can account for >50% of total bacteria in the surface water. However, they remain uncultured to date. We thus set out to use single-cell genomics to gain insights into their genetic make-up, with the aim of learning about their physiology and ecological niche. A representative from the highly abundant acI-B1 group was selected for shotgun genomic sequencing. We obtained a draft genomic sequence in 75 larger contigs (sum=1.16 Mb), with an unusually low genomic G+C mol% (∼42%). Actinobacteria core gene analysis suggests an almost complete genome recovery. We found that the acI-B1 cell had a small genome, with a rather low percentage of genes having no predicted functions (∼15%) as compared with other cultured and genome-sequenced microbial species. Our metabolic reconstruction hints at a facultative aerobe microorganism with many transporters and enzymes for pentoses utilization (for example, xylose). We also found an actinorhodopsin gene that may contribute to energy conservation under unfavorable conditions. This project reveals the metabolic potential of a member of the global abundant freshwater Actinobacteria.
The ISME Journal | 2014
Trevor W Ghylin; Sarahi L. Garcia; Francisco Moya; Ben O Oyserman; Patrick Schwientek; Katrina T. Forest; James P. Mutschler; Jeffrey R. Dwulit-Smith; Leong-Keat Chan; Manuel Martínez-García; Alexander Sczyrba; Ramunas Stepanauskas; Hans-Peter Grossart; Tanja Woyke; Falk Warnecke; Rex R. Malmstrom; Stefan Bertilsson; Katherine D. McMahon
Members of the acI lineage of Actinobacteria are the most abundant microorganisms in most freshwater lakes; however, our understanding of the keys to their success and their role in carbon and nutrient cycling in freshwater systems has been hampered by the lack of pure cultures and genomes. We obtained draft genome assemblies from 11 single cells representing three acI tribes (acI-A1, acI-A7, acI-B1) from four temperate lakes in the United States and Europe. Comparative analysis of acI SAGs and other available freshwater bacterial genomes showed that acI has more gene content directed toward carbohydrate acquisition as compared to Polynucleobacter and LD12 Alphaproteobacteria, which seem to specialize more on carboxylic acids. The acI genomes contain actinorhodopsin as well as some genes involved in anaplerotic carbon fixation indicating the capacity to supplement their known heterotrophic lifestyle. Genome-level differences between the acI-A and acI-B clades suggest specialization at the clade level for carbon substrate acquisition. Overall, the acI genomes appear to be highly streamlined versions of Actinobacteria that include some genes allowing it to take advantage of sunlight and N-rich organic compounds such as polyamines, di- and oligopeptides, branched-chain amino acids and cyanophycin. This work significantly expands the known metabolic potential of the cosmopolitan freshwater acI lineage and its ecological and genetic traits.
The ISME Journal | 2012
Manuel Martínez-García; David M. Brazel; Nicole J. Poulton; Brandon K. Swan; Monica Lluesma Gomez; Dashiell Masland; Michael E. Sieracki; Ramunas Stepanauskas
Heterotrophic protists are a highly diverse and biogeochemically significant component of marine ecosystems, yet little is known about their species-specific prey preferences and symbiotic interactions in situ. Here we demonstrate how these previously unresolved questions can be addressed by sequencing the eukaryote and bacterial SSU rRNA genes from individual, uncultured protist cells collected from their natural marine environment and sorted by flow cytometry. We detected Pelagibacter ubique in association with a MAST-4 protist, an actinobacterium in association with a chrysophyte and three bacteroidetes in association with diverse protist groups. The presence of identical phylotypes among the putative prey and the free bacterioplankton in the same sample provides evidence for predator–prey interactions. Our results also suggest a discovery of novel symbionts, distantly related to Rickettsiales and the candidate divisions ZB3 and TG2, associated with Cercozoa and Chrysophyta cells. This study demonstrates the power of single cell sequencing to untangle ecological interactions between uncultured protists and prokaryotes.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2012
Ines Boujelben; María Gomariz; Manuel Martínez-García; Fernando Santos; Arantxa Peña; Cristina López; Josefa Antón; Sami Maalej
The spatial and seasonal dynamics of the halophilic prokaryotic community was investigated in five ponds from Sfax solar saltern (Tunisia), covering a salinity gradient ranging from 20 to 36%. Fluorescence in situ hybridization indicated that, above 24% salinity, the prokaryotic community shifted from bacterial to archaeal dominance with a remarkable increase in the proportion of detected cells. Denaturing gradient gel electrophoresis (DGGE) profiles were rather similar in all the samples analyzed, except in the lowest salinity pond (around 20% salt) where several specific archaeal and bacterial phylotypes were detected. In spite of previous studies on these salterns, DGGE analysis unveiled the presence of microorganisms not previously described in these ponds, such as Archaea related to Natronomonas or bacteria related to Alkalimnicola, as well as many new sequences of Bacteroidetes. Some phylotypes, such as those related to Haloquadratum or to some Bacteroidetes, displayed a strong dependence of salinity and/or magnesium concentrations, which in the case of Haloquadratum could be related to the presence of ecotypes. Seasonal variability in the prokaryotic community composition was focused on two ponds with the lowest (20%) and the highest salinity (36%). In contrast to the crystallized pond, where comparable profiles between autumn 2007 and summer 2008 were obtained, the non-crystallized pond showed pronounced seasonal changes and a sharp succession of “species” during the year. Canonical correspondence analysis of biological and physicochemical parameters indicated that temperature was a strong factor structuring the prokaryotic community in the non-crystallizer pond, that had salinities ranging from 20 to 23.8% during the year.
Saline Systems | 2008
Josefa Antón; Arantxa Peña; Fernando Santos; Manuel Martínez-García; Philippe Schmitt-Kopplin; Ramon Rosselló-Móra
Since its discovery in 1998, representatives of the extremely halophilic bacterium Salinibacter ruber have been found in many hypersaline environments across the world, including coastal and solar salterns and solar lakes. Here, we review the available information about the distribution, abundance and diversity of this member of the Bacteroidetes.