Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel Narváez is active.

Publication


Featured researches published by Manuel Narváez.


Methods in Enzymology | 2013

G Protein–Coupled Receptor Heterodimerization in the Brain

Dasiel O. Borroto-Escuela; Wilber Romero-Fernandez; Pere Garriga; Francisco Ciruela; Manuel Narváez; Alexander O. Tarakanov; Miklós Palkovits; Luigi F. Agnati; Kjell Fuxe

G protein-coupled receptors (GPCRs) play critical roles in cellular processes and signaling and have been shown to form heteromers with diverge biochemical and/or pharmacological activities that are different from those of the corresponding monomers or homomers. However, despite extensive experimental results supporting the formation of GPCR heteromers in heterologous systems, the existence of such receptor heterocomplexes in the brain remains largely unknown, mostly because of the lack of appropriate methodology. Herein, we describe the in situ proximity ligation assay procedure underlining its high selectivity and sensitivity to image GPCR heteromers with confocal microscopy in brain sections. We describe here how the assay is performed and discuss advantages and disadvantages of this method compared with other available techniques.


Biological Psychiatry | 2012

Fibroblast Growth Factor Receptor 1―5-Hydroxytryptamine 1A Heteroreceptor Complexes and Their Enhancement of Hippocampal Plasticity

Dasiel O. Borroto-Escuela; Wilber Romero-Fernandez; Giuseppa Mudò; Mileidys Pérez-Alea; Francisco Ciruela; Alexander O. Tarakanov; Manuel Narváez; Valentina Di Liberto; Luigi F. Agnati; Natale Belluardo; Kjell Fuxe

BACKGROUND The hippocampus and its 5-hydroxytryptamine transmission plays an important role in depression related to its involvement in limbic circuit plasticity. METHODS The analysis was made with bioluminescence resonance energy transfer, co-immunoprecipitation, in situ proximity ligation assay, binding assay, in cell western and the forced swim test. RESULTS Using bioluminescence resonance energy transfer analysis, fibroblast growth factor receptor 1 (FGFR1)-5-hydroxytryptamine 1A (5-HT1A) receptor complexes have been demonstrated and their specificity and agonist modulation characterized. Their presence based on co-immunoprecipitation and proximity ligation assay has also been indicated in hippocampal cultures and rat dorsal hippocampal formation showing a neuronal location. In vitro assays on extracellular signal-regulated kinases 1 and 2 phosphorylation have shown synergistic increases in signaling on coactivation with fibroblast growth factor 2 (FGF2) and a 5-HT1A agonist, and dependent on the heteroreceptor interface. In vitro and in vivo studies also revealed a 5-HT1A agonist induced phosphorylation of FGFR1 and extracellular signal-regulated kinase 1/2 in rat hippocampus without changing FGF2 levels. Co-activation of the heteroreceptor also resulted in synergistic increases in extensions of PC12 cells and neurite densities and protrusions in primary hippocampal cultures dependent on the receptor interface. The combined acute and repeated intracerebroventricular treatment with FGF2 and 8-OH-DPAT was found to produce evidence of highly significant antidepressant actions in the forced swim test. CONCLUSIONS The findings indicate that neurotrophic and antidepressant effects of 5-HT in brain may, in part, be mediated by activation of the 5-HT1A receptor protomer in the hippocampal FGFR1-5-HT1A receptor complex enhancing the FGFR1 signaling.


Biochemical and Biophysical Research Communications | 2010

Galanin receptor-1 modulates 5-hydroxtryptamine-1A signaling via heterodimerization.

Dasiel O. Borroto-Escuela; Manuel Narváez; Daniel Marcellino; Concepción Parrado; José Ángel Narváez; Alexander O. Tarakanov; Luigi F. Agnati; Zaida Díaz-Cabiale; Kjell Fuxe

Previous biochemical, cardiovascular and behavioral work has given evidence for the existence of antagonistic galanin receptor-5-HT1A receptor interactions in the brain. In this study we investigated the existence of GalR1-5-HT1A receptor heteromers and their functional characteristics. In mammalian cells transfected with GFP2-tagged 5-HT1A receptor and YFP-tagged GalR1 receptor, a proximity-based fluorescence resonance energy transfer technique was used and it has been demonstrated that GalR1-5-HT1A receptors heteromerize. Furthermore, signaling by either the mitogen-activated protein kinase (MAPK) or adenylyl cyclase (AC) pathways by these heteromers indicates a trans-inhibition phenomenon through their interacting interface via allosteric mechanisms that block the development of an excessive activation of G(i/o) and an exaggerated inhibition of AC or stimulation of MAPK activity. The presence of these heteromers in the discrete brain regions is postulated based on the existence of GalR-5-HT1A receptor-receptor interactions previously described in the brain and gives rise to explore possible novel therapeutic strategies for treatment of depression by targeting the GalR1-5-HT1A heteromers.


Biochemical and Biophysical Research Communications | 2010

Characterization of the A2AR-D2R interface: focus on the role of the C-terminal tail and the transmembrane helices.

Dasiel O. Borroto-Escuela; Wilber Romero-Fernandez; Alexander O. Tarakanov; Maricel Gómez-Soler; Fidel Corrales; Daniel Marcellino; Manuel Narváez; Malgorzata Frankowska; Marc Flajolet; Nathaniel Heintz; Luigi F. Agnati; Francisco Ciruela; Kjell Fuxe

A single serine point mutation (S374A) in the adenosine A(2A) receptor (A(2A)R) C-terminal tail reduces A(2A)R-D(2)R heteromerization and prevents its allosteric modulation of the dopamine D(2) receptor (D(2)R). By means of site directed mutagenesis of the A(2A)R and synthetic transmembrane (TM) α-helix peptides of the D(2)R we further explored the role of electrostatic interactions and TM helix interactions of the A(2A)R-D(2)R heteromer interface. We found evidence that the TM domains IV and V of the D(2)R play a major role in the A(2A)R-D(2)R heteromer interface since the incubation with peptides corresponding to these domains significantly reduced the ability of A(2A)R and D(2)R to heteromerize. In addition, the incubation with TM-IV or TM-V blocked the allosteric modulation normally found in A(2A)R-D(2)R heteromers. The mutation of two negatively charged aspartates in the A(2A)R C-terminal tail (D401A/D402A) in combination with the S374A mutation drastically reduced the physical A(2A)R-D(2)R interaction and lost the ability of antagonistic allosteric modulation over the A(2A)R-D(2)R interface, suggesting further evidence for the existence of an electrostatic interaction between the C-terminal tail of A(2A)R and the intracellular loop 3 (IL3) of D(2)R. On the other hand, molecular dynamic model and bioinformatic analysis propose that specific AAR, AQE, and VLS protriplets as an important motive in the A(2A)R-D(2L)R heteromer interface together with D(2L)R TM segments IV/V interacting with A(2A)R TM-IV/V or TM-I/VII.


Biochemical and Biophysical Research Communications | 2010

A serine point mutation in the adenosine A2AR C-terminal tail reduces receptor heteromerization and allosteric modulation of the dopamine D2R

Dasiel O. Borroto-Escuela; Daniel Marcellino; Manuel Narváez; Marc Flajolet; Nathaniel Heintz; Luigi F. Agnati; Francisco Ciruela; Kjell Fuxe

Evidence exists that the adenosine receptor A(2A)R and the dopamine receptor D(2)R form constitutive heteromers in living cells. Mass spectrometry and pull-down data showed that an arginine-rich domain of the D(2)R third intracellular loop binds via electrostatic interactions to a specific motif of the A(2A)R C-terminal tail. It has been indicated that the phosphorylated serine 374 might represent an important residue in this motif. In the present study, it was found that a point mutation of serine 374 to alanine reduced the A(2A)R ability to interact with D(2)R. Also, this point mutation abolished the A(2A)R-mediated inhibition of both the D(2)R high affinity agonist binding and signaling. These results point to a key role of serine 374 in the A(2A)R-D(2)R interface. All together these results indicate that by targeting A(2A)R serine 374 it will be possible to allosterically modulate A(2A)R-D(2)R function, thus representing a new approach for therapeutically modulate D(2)R function.


Biochemical and Biophysical Research Communications | 2014

Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes.

Dasiel O. Borroto-Escuela; Wilber Romero-Fernandez; Manuel Narváez; Julia Oflijan; Luigi F. Agnati; Kjell Fuxe

Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor-receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist (3)H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in (3)H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists.


Frontiers in Endocrinology | 2012

On the existence and function of galanin receptor heteromers in the central nervous system

Kjell Fuxe; Dasiel O. Borroto-Escuela; Wilber Romero-Fernandez; Alexander O. Tarakanov; Feliciano Calvo; Pere Garriga; Mercé Tena; Manuel Narváez; Carmelo Millón; Concepción Parrado; Francisco Ciruela; Luigi F. Agnati; José Ángel Narváez; Zaida Díaz-Cabiale

Galanin receptor (GalR) subtypes 1–3 linked to central galanin neurons may form heteromers with each other and other types of G protein-coupled receptors in the central nervous system (CNS). These heteromers may be one molecular mechanism for galanin peptides and their N-terminal fragments (gal 1-15) to modulate the function of different types of glia–neuronal networks in the CNS, especially the emotional and the cardiovascular networks. GalR–5-HT1A heteromers likely exist with antagonistic GalR–5-HT1A receptor–receptor interactions in the ascending midbrain raphe 5-HT neuron systems and their target regions. They represent a novel target for antidepressant drugs. Evidence is given for the existence of GalR1–5-HT1A heteromers in cellular models with trans-inhibition of the protomer signaling. A GalR1–GalR2 heteromer is proposed to be a galanin N-terminal fragment preferring receptor (1-15) in the CNS. Furthermore, a GalR1–GalR2–5-HT1A heterotrimer is postulated to explain why only galanin (1-15) but not galanin (1-29) can antagonistically modulate the 5-HT1A receptors in the dorsal hippocampus rich in gal fragment binding sites. The results underline a putative role of different types of GalR–5-HT1A heteroreceptor complexes in depression. GalR antagonists may also have therapeutic actions in depression by blocking the antagonistic GalR–NPYY1 receptor interactions in putative GalR–NPYY1 receptor heteromers in the CNS resulting in increases in NPYY1 transmission and antidepressant effects. In contrast the galanin fragment receptor (a postulated GalR1–GalR2 heteromer) appears to be linked to the NPYY2 receptor enhancing the affinity of the NPYY2 binding sites in a putative GalR1–GalR2–NPYY2 heterotrimer. Finally, putative GalR–α2-adrenoreceptor heteromers with antagonistic receptor–receptor interactions may be a widespread mechanism in the CNS for integration of galanin and noradrenaline signals also of likely relevance for depression.


Frontiers in Cellular Neuroscience | 2017

Understanding the Role of GPCR Heteroreceptor Complexes in Modulating the Brain Networks in Health and Disease

Dasiel O. Borroto-Escuela; Jens Carlsson; Patricia Ambrogini; Manuel Narváez; Karolina Wydra; Alexander O. Tarakanov; Xiang Li; Carmelo Millón; Luca Ferraro; Sergio Tanganelli; Fang Liu; Małgorzata Filip; Zaida Díaz-Cabiale; Kjell Fuxe

The introduction of allosteric receptor–receptor interactions in G protein-coupled receptor (GPCR) heteroreceptor complexes of the central nervous system (CNS) gave a new dimension to brain integration and neuropsychopharmacology. The molecular basis of learning and memory was proposed to be based on the reorganization of the homo- and heteroreceptor complexes in the postjunctional membrane of synapses. Long-term memory may be created by the transformation of parts of the heteroreceptor complexes into unique transcription factors which can lead to the formation of specific adapter proteins. The observation of the GPCR heterodimer network (GPCR-HetNet) indicated that the allosteric receptor–receptor interactions dramatically increase GPCR diversity and biased recognition and signaling leading to enhanced specificity in signaling. Dysfunction of the GPCR heteroreceptor complexes can lead to brain disease. The findings of serotonin (5-HT) hetero and isoreceptor complexes in the brain over the last decade give new targets for drug development in major depression. Neuromodulation of neuronal networks in depression via 5-HT, galanin peptides and zinc involve a number of GPCR heteroreceptor complexes in the raphe-hippocampal system: GalR1-5-HT1A, GalR1-5-HT1A-GPR39, GalR1-GalR2, and putative GalR1-GalR2-5-HT1A heteroreceptor complexes. The 5-HT1A receptor protomer remains a receptor enhancing antidepressant actions through its participation in hetero- and homoreceptor complexes listed above in balance with each other. In depression, neuromodulation of neuronal networks in the raphe-hippocampal system and the cortical regions via 5-HT and fibroblast growth factor 2 involves either FGFR1-5-HT1A heteroreceptor complexes or the 5-HT isoreceptor complexes such as 5-HT1A-5-HT7 and 5-HT1A-5-HT2A. Neuromodulation of neuronal networks in cocaine use disorder via dopamine (DA) and adenosine signals involve A2AR-D2R and A2AR-D2R-Sigma1R heteroreceptor complexes in the dorsal and ventral striatum. The excitatory modulation by A2AR agonists of the ventral striato-pallidal GABA anti-reward system via targeting the A2AR-D2R and A2AR-D2R-Sigma1R heteroreceptor complex holds high promise as a new way to treat cocaine use disorders. Neuromodulation of neuronal networks in schizophrenia via DA, adenosine, glutamate, 5-HT and neurotensin peptides and oxytocin, involving A2AR-D2R, D2R-NMDAR, A2AR-D2R-mGluR5, D2R-5-HT2A and D2R-oxytocinR heteroreceptor complexes opens up a new world of D2R protomer targets in the listed heterocomplexes for treatment of positive, negative and cognitive symptoms of schizophrenia.


Neural Plasticity | 2016

Understanding the Functional Plasticity in Neural Networks of the Basal Ganglia in Cocaine Use Disorder: A Role for Allosteric Receptor-Receptor Interactions in A2A-D2 Heteroreceptor Complexes

Dasiel O. Borroto-Escuela; Karolina Wydra; Julia Pintsuk; Manuel Narváez; Fidel Corrales; Magdalena Zaniewska; Luigi F. Agnati; Rafael Franco; Sergio Tanganelli; Luca Ferraro; Małgorzata Filip; Kjell Fuxe

Our hypothesis is that allosteric receptor-receptor interactions in homo- and heteroreceptor complexes may form the molecular basis of learning and memory. This principle is illustrated by showing how cocaine abuse can alter the adenosine A2AR-dopamine D2R heterocomplexes and their receptor-receptor interactions and hereby induce neural plasticity in the basal ganglia. Studies with A2AR ligands using cocaine self-administration procedures indicate that antagonistic allosteric A2AR-D2R heterocomplexes of the ventral striatopallidal GABA antireward pathway play a significant role in reducing cocaine induced reward, motivation, and cocaine seeking. Anticocaine actions of A2AR agonists can also be produced at A2AR homocomplexes in these antireward neurons, actions in which are independent of D2R signaling. At the A2AR-D2R heterocomplex, they are dependent on the strength of the antagonistic allosteric A2AR-D2R interaction and the number of A2AR-D2R and A2AR-D2R-sigma1R heterocomplexes present in the ventral striatopallidal GABA neurons. It involves a differential cocaine-induced increase in sigma1Rs in the ventral versus the dorsal striatum. In contrast, the allosteric brake on the D2R protomer signaling in the A2AR-D2R heterocomplex of the dorsal striatopallidal GABA neurons is lost upon cocaine self-administration. This is potentially due to differences in composition and allosteric plasticity of these complexes versus those in the ventral striatopallidal neurons.


Biochemical and Biophysical Research Communications | 2013

Dopamine D2 receptor signaling dynamics of dopamine D2-neurotensin 1 receptor heteromers.

Dasiel O. Borroto-Escuela; Annalisa Ravani; Alexander O. Tarakanov; Ismel Brito; Manuel Narváez; Wilber Romero-Fernandez; Fidel Corrales; Luigi F. Agnati; Sergio Tanganelli; Luca Ferraro; Kjell Fuxe

Biochemical, histochemical and coimmunoprecipitation experiments have indicated the existence of antagonistic dopamine D2 (D2R) and neurotensin 1 (NTS1R) receptor-receptor interactions in the dorsal and ventral striatum indicating a potential role of these receptor-receptor interactions in Parkinsons disease and schizophrenia. By means of Bioluminiscence Resonance energy transfer (BRET(2)) evidence has for the first time been obtained in the current study for the existence of both D2LR/NTS1R and D2SR/NTS1R heteromers in living HEK293T cells. Through confocal laser microscopy the NTS1R(GFP2) and D2R(YFP) were also shown to be colocated in the plasma membrane of these cells. A bioinformatic analysis suggests the existence of a basic set of three homology protriplets (TVM, DLL and/or LRA) in the two participating receptors which may contribute to the formation of the D2R/NTS1R heteromers by participating in guide-clasp interactions in the receptor interface. The CREB reporter gene assay indicated that the neurotensin receptor agonist JMV 449 markedly reduced the potency of the D2R like agonist quinpirole to inhibit the forskolin induced increase of the CREB signal. In contrast, the neurotensin agonist was found to markedly increase the quinpirole potency to activate the MAPK pathway as also studied with luciferase reporter gene assay measuring the degree of SRE activity as well as with ERK1/2 phosphorylation assays. These dynamic changes in D2R signaling produced by the neurotensin receptor agonist may involve antagonistic allosteric receptor-receptor interactions in the D2LR-NTS1R heteromers at the plasma membrane level (CREB pathway) and synergistic interactions in PKC activation at the cytoplasmatic level (MAPK pathway).

Collaboration


Dive into the Manuel Narváez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luigi F. Agnati

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge