Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel Nieves-Cordones is active.

Publication


Featured researches published by Manuel Nieves-Cordones.


Plant and Cell Physiology | 2011

Root K+ Acquisition in Plants: The Arabidopsis thaliana Model

Fernando Alemán; Manuel Nieves-Cordones; Vicente Martínez; Francisco Rubio

K(+) is an essential macronutrient required by plants to complete their life cycle. It fulfills important functions and it is widely used as a fertilizer to increase crop production. Thus, the identification of the systems involved in K(+) acquisition by plants has always been a research goal as it may eventually produce molecular tools to enhance crop productivity further. This review is focused on the recent findings on the systems involved in K(+) acquisition. From Epsteins pioneering work >40 years ago, K(+) uptake was considered to consist of a high- and a low-affinity component. The subsequent molecular approaches identified genes encoding K(+) transport systems which could be involved in the first step of K(+) uptake at the plant root. Insights into the regulation of these genes and the proteins that they encode have also been gained in recent studies. A demonstration of the role of the two main K(+) uptake systems at the root, AtHKA5 and AKT1, has been possible with the study of Arabidopsis thaliana T-DNA insertion lines that knock out these genes. AtHAK5 was revealed as the only uptake system at external concentrations <10 μM. Between 10 and 200 μM both AtHAK5 and AKT1 contribute to K(+) acquisition. At external concentrations >500 μM, AtHAK5 is not relevant and AKT1s contribution to K(+) uptake becomes more important. At 10 mM K(+), unidentified systems may provide sufficient K(+) uptake for plant growth.


Physiologia Plantarum | 2008

Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations.

Francisco Rubio; Manuel Nieves-Cordones; Fernando Alemán; Vicente Martínez

The relative contribution of the high-affinity K(+) transporter AtHAK5 and the inward rectifier K(+) channel AtAKT1 to K(+) uptake in the high-affinity range of concentrations was studied in Arabidopsis thaliana ecotype Columbia (Col-0). The results obtained with wild-type lines, with T-DNA insertion in both genes and specific uptake inhibitors, show that AtHAK5 and AtAKT1 mediate the NH4+-sensitive and the Ba(2+)-sensitive components of uptake, respectively, and that they are the two major contributors to uptake in the high-affinity range of Rb(+) concentrations. Using Rb(+) as a K(+) analogue, it was shown that AtHAK5 mediates absorption at lower Rb(+) concentrations than AtAKT1 and depletes external Rb(+) to values around 1 muM. Factors such as the presence of K(+) or NH4+ during plant growth determine the relative contribution of each system. The presence of NH4+ in the growth solution inhibits the induction of AtHAK5 by K(+) starvation. In K(+)-starved plants grown without NH4+, both systems are operative, but when NH4+ is present in the growth solution, AtAKT1 is probably the only system mediating Rb(+) absorption, and the capacity of the roots to deplete Rb(+) is reduced.


Journal of Plant Physiology | 2014

Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species?

Anne-Aliénor Véry; Manuel Nieves-Cordones; Meriem Daly; Imran Khan; Cécile Fizames; Hervé Sentenac

Cloning and characterizations of plant K(+) transport systems aside from Arabidopsis have been increasing over the past decade, favored by the availability of more and more plant genome sequences. Information now available enables the comparison of some of these systems between species. In this review, we focus on three families of plant K(+) transport systems that are active at the plasma membrane: the Shaker K(+) channel family, comprised of voltage-gated channels that dominate the plasma membrane conductance to K(+) in most environmental conditions, and two families of transporters, the HAK/KUP/KT K(+) transporter family, which includes some high-affinity transporters, and the HKT K(+) and/or Na(+) transporter family, in which K(+)-permeable members seem to be present in monocots only. The three families are briefly described, giving insights into the structure of their members and on functional properties and their roles in Arabidopsis or rice. The structure of the three families is then compared between plant species through phylogenic analyses. Within clusters of ortologues/paralogues, similarities and differences in terms of expression pattern, functional properties and, when known, regulatory interacting partners, are highlighted. The question of the physiological significance of highlighted differences is also addressed.


Plant Molecular Biology | 2008

A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5.

Manuel Nieves-Cordones; Anthony J. Miller; Fernando Alemán; Vicente Martínez; Francisco Rubio

A chimeric CaHAK1–LeHAK5 transporter with only 15 amino acids of CaHAK1 in the N-terminus mediates high-affinity K+ uptake in yeast cells. Kinetic and expression analyses strongly suggest that LeHAK5 mediates a significant proportion of the high-affinity K+ uptake shown by K+-starved tomato (Solanum lycopersicum) plants. The development of high-affinity K+ uptake, putatively mediated by LeHAK5, was correlated with increased LeHAK5 mRNA levels and a more negative electrical potential difference across the plasma membrane of root epidermal and cortical cells. However, this increase in high-affinity K+ uptake was not correlated with the root K+ content. Thus, (i) growth conditions that result in a hyperpolarized root plasma membrane potential, such as K+ starvation or growth in the presence of NH4+, but which do not decrease the K+ content, lead to increased LeHAK5 expression; (ii) the presence of NaCl in the growth solution, which prevents the hyperpolarization induced by K+ starvation, also prevents LeHAK5 expression. Moreover, once the gene is induced, depolarization of the plasma membrane potential then produces a decrease in the LeHAK5 mRNA. On the basis of these results, we propose that the plant membrane electrical potential plays a role in the regulation of the expression of this gene encoding a high-affinity K+ transporter.


Molecular Plant | 2010

The Arabidopsis thaliana HAK5 K+ Transporter Is Required for Plant Growth and K+ Acquisition from Low K+ Solutions under Saline Conditions

Manuel Nieves-Cordones; Fernando Alemán; Vicente Martínez; Francisco Rubio

K(+) uptake in the high-affinity range of concentrations and its components have been widely studied. In Arabidposis thaliana, the AtHAK5 transporter and the AtAKT1 channel have been shown to be the main transport proteins involved in this process. Here, we study the role of these two systems under two important stress conditions: low K(+) supply or the presence of salinity. T-DNA insertion lines disrupting AtHAK5 and AtAKT1 are employed for long-term experiments that allow physiological characterization of the mutant lines. We found that AtHAK5 is required for K(+) absorption necessary to sustain plant growth at low K(+) in the absence as well as in the presence of salinity. Salinity greatly reduced AtHAK5 transcript levels and promoted AtAKT1-mediated K(+) efflux, resulting in an important impairment of K(+) nutrition. Although having a limited capacity, AtHAK5 plays a major role for K(+) acquisition from low K(+) concentrations in the presence of salinity.


Journal of Plant Physiology | 2014

K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms ☆

Manuel Nieves-Cordones; Fernando Alemán; Vicente Martínez; Francisco Rubio

Potassium (K(+)) is an essential macronutrient for plants. It is taken into the plant by the transport systems present in the plasma membranes of root epidermal and cortical cells. The identity of these systems and their regulation is beginning to be understood and the systems of K(+) transport in the model species Arabidopsis thaliana remain far better characterized than in any other plant species. Roots can activate different K(+) uptake systems to adapt to their environment, important to a sessile organism that needs to cope with a highly variable environment. The mechanisms of K(+) acquisition in the model species A. thaliana are the best characterized at the molecular level so far. According to the current model, non-selective channels are probably the main pathways for K(+) uptake at high concentrations (>10mM), while at intermediate concentrations (1mM), the inward rectifying channel AKT1 dominates K(+) uptake. Under lower concentrations of external K(+) (100μM), AKT1 channels, together with the high-affinity K(+) uptake system HAK5 contribute to K(+) acquisition, and at extremely low concentrations (<10μM) the only system capable of taking up K(+) is HAK5. Depending on the species the high-affinity system has been named HAK5 or HAK1, but in all cases it fulfills the same functions. The activation of these systems as a function of the K(+) availability is achieved by different mechanisms that include phosphorylation of AKT1 or induction of HAK5 transcription. Some of the characteristics of the systems for root K(+) uptake are shared by other organisms, whilst others are specific to plants. This indicates that some crucial properties of the ancestral of K(+) transport systems have been conserved through evolution while others have diverged among different kingdoms.


Physiologia Plantarum | 2010

Studies on Arabidopsis athak5, atakt1 double mutants disclose the range of concentrations at which AtHAK5, AtAKT1 and unknown systems mediate K+ uptake

Francisco Rubio; Fernando Alemán; Manuel Nieves-Cordones; Vicente Martínez

The high-affinity K(+) transporter AtHAK5 and the inward-rectifier K(+) channel AtAKT1 have been described to contribute to K(+) uptake in Arabidopsis thaliana. Studies with T-DNA insertion lines showed that both systems participate in the high-affinity range of concentrations and only AtAKT1 in the low-affinity range. However the contribution of other systems could not be excluded with the information and plant material available. The results presented here with a double knock-out athak5, atakt1 mutant show that AtHAK5 is the only system mediating K(+) uptake at concentrations below 0.01 mM. In the range between 0.01 and 0.05 mM K(+) AtHAK5 and AtAKT1 are the only contributors to K(+) acquisition. At higher K(+) concentrations, unknown systems come into operation and participate together with AtAKT1 in low-affinity K(+) uptake. These systems can supply sufficient K(+) to promote plant growth even in the absence of AtAKT1 or in the presence of 10 mM K(+) where AtAKT1 is not essential.


Plant Physiology | 2015

The CBL-Interacting Protein Kinase CIPK23 Regulates HAK5-Mediated High-Affinity K+ Uptake in Arabidopsis Roots

Paula Ragel; Reyes Ródenas; Elena García-Martín; Zaida Andrés; Irene Villalta; Manuel Nieves-Cordones; Rosa M. Rivero; Vicente Martínez; José M. Pardo; Francisco J. Quintero; Francisco Rubio

The protein kinase CIPK23 activates high-affinity K+ uptake in roots and is essential for growth in K+-limiting conditions. Plant growth and development requires efficient acquisition of essential elements. Potassium (K+) is an important macronutrient present in the soil solution at a wide range of concentrations. Regulation of the K+ uptake systems in the roots is essential to secure K+ supply. It has been shown in Arabidopsis (Arabidopsis thaliana) that when the external K+ concentration is very low (<10 µm), K+ nutrition depends exclusively on the high-affinity K+ transporter5 (HAK5). Low-K+-induced transcriptional activation of the gene encoding HAK5 has been previously reported. Here, we show the posttranscriptional regulation of HAK5 transport activity by phosphorylation. Expression in a heterologous system showed that the Ca2+ sensors calcineurin B-like (CBL1), CBL8, CBL9, and CBL10, together with CBL-interacting protein kinase23 (CIPK23), activated HAK5 in vivo. This activation produced an increase in the affinity and the Vmax of K+ transport. In vitro experiments show that the N terminus of HAK5 is phosphorylated by CIPK23. This supports the idea that phosphorylation of HAK5 induces a conformational change that increases its affinity for K+. Experiments of K+ (Rb+) uptake and growth measurements in low-K+ medium with Arabidopsis single mutants hak5, akt1, and cipk23, double mutants hak5 akt1, hak5 cipk23, and akt1 cipk23, and the triple mutant hak5 akt1 cipk23 confirmed the regulatory role of CIPK23 in planta.


Physiologia Plantarum | 2014

A low K+ signal is required for functional high-affinity K+ uptake through HAK5 transporters.

Francisco Rubio; Mario Fon; Reyes Ródenas; Manuel Nieves-Cordones; Fernando Alemán; Rosa M. Rivero; Vicente Martínez

The high-affinity K(+) transporter HAK5 is a key system for root K(+) uptake and, under very low external K(+), the only one capable of supplying K(+) to the plant. Functional HAK5-mediated K(+) uptake should be tightly regulated for plant adaptation to different environmental conditions. Thus, it has been described that the gene encoding the transporter is transcriptionally regulated, being highly induced under K(+) limitation. Here we show that environmental conditions, such as the lack of K(+), NO(3)(-) or P, that induced a hyperpolarization of the plasma membrane of root cells, induce HAK5 transcription. However, only the deprivation of K(+) produces functional HAK5-mediated K(+) uptake in the root. These results suggest on the one hand the existence of a posttranscriptional regulation of HAK5 elicited by the low K(+) signal and on the other that HAK5 may be involved in yet-unknown functions related to NO(3)(-) and P deficiencies. These results have been obtained here with Solanum lycopersicum (cv. Micro-Tom) as well as Arabidopsis thaliana plants, suggesting that the posttranscriptional regulation of high-affinity HAK transporters take place in all plant species.


Frontiers in Plant Science | 2016

Comparison between Arabidopsis and Rice for Main Pathways of K+ and Na+ Uptake by Roots

Manuel Nieves-Cordones; Vicente Martínez; Begoña Benito; Francisco Rubio

K+ is an essential macronutrient for plants. It is acquired by specific uptake systems located in roots. Although the concentrations of K+ in the soil solution are widely variable, K+ nutrition is secured by uptake systems that exhibit different affinities for K+. Two main systems have been described for root K+ uptake in several species: the high-affinity HAK5-like transporter and the inward-rectifier AKT1-like channel. Other unidentified systems may be also involved in root K+ uptake, although they only seem to operate when K+ is not limiting. The use of knock-out lines has allowed demonstrating their role in root K+ uptake in Arabidopsis and rice. Plant adaptation to the different K+ supplies relies on the finely tuned regulation of these systems. Low K+-induced transcriptional up-regulation of the genes encoding HAK5-like transporters occurs through a signal cascade that includes changes in the membrane potential of root cells and increases in ethylene and reactive oxygen species concentrations. Activation of AKT1 channels occurs through phosphorylation by the CIPK23/CBL1 complex. Recently, activation of the Arabidopsis HAK5 by the same complex has been reported, pointing to CIPK23/CBL as a central regulator of the plant’s adaptation to low K+. Na+ is not an essential plant nutrient but it may be beneficial for some plants. At low concentrations, Na+ improves growth, especially under K+ deficiency. Thus, high-affinity Na+ uptake systems have been described that belong to the HKT and HAK families of transporters. At high concentrations, typical of saline environments, Na+ accumulates in plant tissues at high concentrations, producing alterations that include toxicity, water deficit and K+ deficiency. Data concerning pathways for Na+ uptake into roots under saline conditions are still scarce, although several possibilities have been proposed. The apoplast is a significant pathway for Na+ uptake in rice grown under salinity conditions, but in other plant species different mechanisms involving non-selective cation channels or transporters are under discussion.

Collaboration


Dive into the Manuel Nieves-Cordones's collaboration.

Top Co-Authors

Avatar

Vicente Martínez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Francisco Rubio

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Fernando Alemán

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Reyes Ródenas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Rosa M. Rivero

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Chavanieu

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Emmanuel Guiderdoni

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Researchain Logo
Decentralizing Knowledge