Manuel Pazos
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manuel Pazos.
Journal of Agricultural and Food Chemistry | 2008
Manuel Pazos; Ana Paula Alonso; Isabel Sanchez; Isabel Medina
Hydroxytyrosol, a natural phenolic compound obtained from olive oil byproduct, was characterized as an antioxidant in three different foodstuffs rich in fish lipids: (a) bulk cod liver oil (40% of omega-3 PUFAs), (b) cod liver oil-in-water emulsions (4% of omega-3 PUFAs), and (c) frozen minced horse mackerel ( Trachurus trachurus) muscle. Hydroxytyrosol was evaluated at different concentration levels (10, 50, and 100 ppm), and its antioxidant capacity was compared against that of a synthetic phenolic, propyl gallate. Results proved the efficiency of hydroxytyrosol to inhibit the formation of lipid oxidation products in all tested food systems, although two different optimal antioxidant concentrations were observed. In bulk oil and oil-in-water emulsions, a higher oxidative stability was achieved by increasing the concentration of hydroxytyrosol, whereas an intermediate concentration (50 ppm) showed more efficiency, delaying lipid oxidation in frozen minced fish muscle. The endogenous depletion of alpha-tocopherol and omega-3 polyunsaturated fatty acids (omega-3 PUFAs) was also inhibited by supplementing hydroxytyrosol in minced muscle; however, the consumption of the endogenous total glutathione was not efficiently reduced by either hydroxytyrosol or propyl gallate. A concentration of 50 ppm of hydroxytyrosol was best to maintain a longer initial level of alpha-tocopherol (approximately 300 microg/g of fat), whereas both 50 and 100 ppm of hydroxytyrosol were able to preserve completely omega-3 PUFAs. Hydroxytyrosol and propyl gallate showed comparable antioxidant activities in emulsions and frozen fish muscle, and propyl gallate exhibited better antioxidant efficiency in bulk fish oil.
Electrophoresis | 2013
Karola Böhme; Inmaculada C. Fernández-No; Manuel Pazos; José Manuel Gallardo; Jorge Barros-Velázquez; Benito Cañas; Pilar Calo-Mata
The present study aims to compare two molecular technologies, 16S rRNA sequencing and MALDI‐TOF MS, for bacterial species identification in seafood. With this aim, 70 reference strains from culture collections, including important seafood‐borne pathogenic and spoilage bacterial species, and 50 strains isolated from commercial seafood products, were analysed by both techniques. Genomic analysis only identified the species of 50% of the isolated strains, proving to be particularly poor at identifying members of the Pseudomonas and Bacillus genera. In contrast, MALDI‐TOF MS fingerprinting identified 76% of the strains at the species level. The mass spectral data were submitted to the SpectraBank database (http://www.spectrabank.org), making this information available to other researchers. Furthermore, cluster analysis of the peak mass lists was carried out with the web application SPECLUST and the calculated groupings were consistent with results determined by a phylogenetic approach that is based on the 16S rRNA sequences. However, the MALDI‐TOF MS analysis demonstrated more discriminating potential that allowed for better classification, especially for the Pseudomonas and Bacillus genera. This is of importance with respect to the varying pathogenic and spoilage character at the intragenus and intraspecies level. In this sense, MALDI‐TOF MS demonstrated to be a competent bacterial typing tool that extends phenotypic and genotypic approaches, allowing a more ample classification of bacterial strains.
Journal of Agricultural and Food Chemistry | 2009
Jacobo Iglesias; Manuel Pazos; Mogens L. Andersen; Leif H. Skibsted; Isabel Medina
In an emulsion of corn oil in water with the addition of caffeic acid (Caf-OH) and alpha-tocopherol (alpha-TOH), Caf-OH was found to be very active in delaying lipid oxidation without affecting significantly the kinetics for alpha-TOH degradation. In contrast, Caf-OH addition to fish muscle retarded both the degradation of endogenous alpha-TOH and the propagation of lipid oxidation, measured by peroxide value (PV) and thiobarbituric acid reactive substances (TBARS), with increasing effect with increasing Caf-OH addition (55.5-555.1 micromol/kg). Electron spin resonance (ESR) spectroscopy confirmed a higher capacity of Caf-OH to regenerate alpha-TOH via reduction of the alpha-tocopheroxyl radical compared to other cinnamic acid derivatives (o-coumaric, ferulic, and chlorogenic acids). Degradation of endogenous ascorbate (AscH(-)) was accelerated at higher concentration of Caf-OH in fish tissue, suggesting a role of AscH(-) in the regeneration of Caf-OH. These results indicate that the antioxidant mechanism of Caf-OH implies the protection of endogenous alpha-TOH localized in tissue membranes where lipid oxidation is initiated and, at the same time, Caf-OH regeneration by the endogenous AscH(-). These combined effects result in a stronger antioxidant protection against lipid oxidation by favoring, as a final point, the protection of alpha-TOH, which is suggested as the last defense of fish muscle against lipid oxidation.
Journal of Biological Chemistry | 2013
Manuel Pazos; Paolo Natale; Miguel Vicente
Background: ZipA attaches FtsZ to the E. coli inner membrane, its action can be bypassed by FtsA* gain-of-function mutants. Results: FtsZ levels, decreased by ClpP in maxicells, are maintained by an excess of ZipA, but not FtsA+ or FtsA*. Conclusion: ZipA may protect FtsZ from ClpP degradation by preventing recognition by ClpX. Significance: ZipA cannot be fully replaced by the other proto-ring proteins. In Escherichia coli, the cell division protein FtsZ is anchored to the cytoplasmic membrane by the action of the bitopic membrane protein ZipA and the cytoplasmic protein FtsA. Although the presence of both ZipA and FtsA is strictly indispensable for cell division, an FtsA gain-of-function mutant FtsA* (R286W) can bypass the ZipA requirement for cell division. This observation casts doubts on the role of ZipA and its need for cell division. Maxicells are nucleoid-free bacterial cells used as a whole cell in vitro system to probe protein-protein interactions without the need of protein purification. We show that ZipA protects FtsZ from the ClpXP-directed degradation observed in E. coli maxicells and that ZipA-stabilized FtsZ forms membrane-attached spiral-like structures in the bacterial cytoplasm. The overproduction of the FtsZ-binding ZipA domain is sufficient to protect FtsZ from degradation, whereas other C-terminal ZipA partial deletions lacking it are not. Individual overproduction of the proto-ring component FtsA or its gain-of-function mutant FtsA* does not result in FtsZ protection. Overproduction of FtsA or FtsA* together with ZipA does not interfere with the FtsZ protection. Moreover, neither FtsA nor FtsA* protects FtsZ when overproduced together with ZipA mutants lacking the FZB domain. We propose that ZipA protects FtsZ from degradation by ClpP by making the FtsZ site of interaction unavailable to the ClpX moiety of the ClpXP protease. This role cannot be replaced by either FtsA or FtsA*, suggesting a unique function for ZipA in proto-ring stability.
Free Radical Biology and Medicine | 2013
Lucía Méndez; Manuel Pazos; José Manuel Gallardo; Josep Lluís Torres; Jara Pérez-Jiménez; Rosa Nogués; Marta Romeu; Isabel Medina
The potential effects of various dietary eicosapentaenoic acid (EPA; 20:5) and docosahexaenoic acid (DHA; 22:6) ratios (1:1, 2:1, and 1:2, respectively) on protein redox states from plasma, kidney, skeletal muscle, and liver were investigated in Wistar rats. Dietary fish oil groups were compared with animals fed soybean and linseed oils, vegetable oils enriched in ω6 linoleic acid (LA; 18:2) and ω3 α-linolenic acid (ALA; 18:3), respectively. Fish oil treatments were effective at reducing the level of total fatty acids in plasma and enriching the plasmatic free fatty acid fraction and erythrocyte membranes in EPA and DHA. A proteomic approach consisting of fluorescein 5-thiosemicarbazide (FTSC) labeling of protein carbonyls, FTSC intensity visualization on 1-DE or 2-DE gels, and protein identification by MS/MS was used for the protein oxidation assessment. Albumin was found to be the most carbonylated protein in plasma for all dietary groups, and its oxidation level was significantly modulated by dietary interventions. Supplementation with an equal EPA:DHA ratio (1:1) showed the lowest oxidation score for plasma albumin, followed in increasing order of carbonylation by 1:2 <2:1 ≈ linseed < soybean. Oxidation patterns of myofibrillar skeletal muscle proteins and cytosolic proteins from kidney and liver also indicated a protective effect on proteins for the fish oil treatments, the 1:1 ratio exhibiting the lowest protein oxidation scores. The effect of fish oil treatments at reducing carbonylation on specific proteins from plasma (albumin), skeletal muscle (actin), and liver (albumin, argininosuccinate synthetase, 3-α-hydroxysteroid dehydrogenase) was remarkable. This investigation highlights the efficiency of dietary fish oil at reducing in vivo oxidative damage of proteins compared to oils enriched in the 18-carbon polyunsaturated fatty acids ω3 ALA and ω6 LA, and such antioxidant activity may differ among different fish oil sources because of variations in EPA/DHA content.
Environmental Microbiology | 2013
Paolo Natale; Manuel Pazos; Miguel Vicente
Septation in Escherichia coli involves complex molecular mechanisms that contribute to the accuracy of bacterial division. The proto-ring, a complex made up by the FtsZ, FtsA and ZipA proteins, forms at the beginning of the process and directs the assembly of the full divisome. Central to this complex is the FtsZ protein, a GTPase able to assemble into a ring-like structure that responds to several modulatory inputs including mechanisms to position the septum at midcell. The connection with the cell wall synthesising machinery stabilizes the constriction of the cytoplasmic membrane. Although a substantial amount of evidence supports this description, many details on how individual divisome elements are structured or how they function are subjected to controversial interpretations. We discuss these discrepancies arising from incomplete data and from technical difficulties imposed by the small size of bacteria. Future work, including more powerful imaging and reconstruction technologies, will help to clarify the missing details on the architecture and function of the bacterial division machinery.
Food Chemistry | 2012
Jacobo Iglesias; Manuel Pazos; Josep Lluís Torres; Isabel Medina
The present study investigates the antioxidant mechanism of grape procyanidins and, in particular, their aptitude to establish redox interactions with two important components of the endogenous antioxidant system of muscle tissues, α-tocopherol (α-TOH) and ascorbic acid (AA). To this end, the progress of lipid oxidation was monitored in fish muscle supplemented with grape procyanidins at the concentrations usually employed in antioxidant food applications, and then related to the redox stability of the endogenous α-TOH and AA. In addition to the lipid oxidation protective effect, the incorporation of procyanidins also provided an improvement of the redox stability of the endogenous components in a straight procyanidinic concentration-dependent manner. Results showed the capacity of procyanidins to repair oxidised α-TOH at medium-long term, and to delay the AA depletion. Therefore, such cooperative redox interaction of exogenous procyanidins adequately complements the natural α-TOH regenerative system supplied by AA that is efficient at the early post mortem stages.
Journal of Nutritional Biochemistry | 2015
Gabriel Dasilva; Manuel Pazos; Eduardo García-Egido; José Manuel Gallardo; I. Rodríguez; R. Cela; Isabel Medina
Dietary intervention with ω-3 marine fatty acids may potentially modulate inflammation and oxidative stress markers related with CVD, metabolic syndrome and cancer. The aim of this study was to evaluate whether different proportions of ω-3 EPA and DHA intake provoke a modulation of the production of lipid mediators and then, an influence on different indexes of inflammation and oxidative stress in a controlled dietary animal experiment using Wistar rats. For such scope, a lipidomic SPE-LC-ESI-MS/MS approach previously developed was applied to determine lipid mediators profile in plasma samples. The effect of ω-3 fatty acids associated to different ratios EPA:DHA was compared with the effect exerted by ω-3 ALA supplementation from linseed oil and ω-6 LA from soybean oil. CRP showed a tendency to greater inflammatory status in all ω-3-fed animals. Interestingly, ratios 1:1 and 2:1 EPA:DHA evidenced a noteworthy healthy effect generating a less oxidative environment and modulating LOX and COX activities toward a decrease in the production of proinflammatory ARA eicosanoids and oxidative stress biomarkers from EPA and DHA. In addition, the ability of 1:1 and 2:1 fish oil diets to reduce lipid mediator levels was in concurrence with the protective effect exerted by decreasing inflammatory markers as ω-6/ω-3 ratio in plasma and membranes. It was also highlighted the effect of a higher DHA amount in the diet reducing the healthy benefits described in terms of inflammation and oxidative stress. Results support the antiinflammatory and antioxidative role of fish oils and, particularly, the effect of adequate proportions EPA:DHA.
Journal of Agricultural and Food Chemistry | 2010
Jacobo Iglesias; Manuel Pazos; Salomé Lois; Isabel Medina
Polyphenolic fractions extracted from pine (Pinus pinaster) bark, grape (Vitis vinifera) pomace, and witch hazel (Hamamelis virginiana) bark were selected for investigating the influence of the number of phenolic units, polymerization, and the content of esterified galloyl residues (galloylation) on their efficacy for inhibiting lipid oxidation in fish lipid enriched foodstuffs. Experiments carried out with nongalloylated pine bark fractions with different polymerization degrees demonstrated that the number of catechin residues per molecule modulates their reducing and chelating properties in solution. In real food systems such as bulk fish oil and fish oil-in-water emulsions, the efficacy against lipid oxidation was highly dependent on the physical location of the antioxidant at the oxidative sensitive sites. The lowest polymerized fractions were the most efficient in bulk fish oil samples, whereas proanthocyanidins with an intermediate polymerization degree showed the highest activity in fish oil-in-water emulsions. Galloylation did not influence the antioxidant effectiveness of proanthocyanidins in bulk fish oils. The presence of galloyl groups favored the antioxidant activity of the polyphenols in emulsions, although results indicated that a high degree of galloylation did not improve significantly the activity found with medium galloylated proanthocyanidins. The results obtained in this research provide useful information about the relationship between structure and antioxidant activity in order to design antioxidant additives with application in fish oil-enriched functional foods.
Journal of Agricultural and Food Chemistry | 2009
Manuel Pazos; Josep Lluís Torres; Mogens L. Andersen; Leif H. Skibsted; Isabel Medina
The ability of several polyphenolic fractions from grape ( Vitis vinifera ) pomace, pine ( Pinus pinaster ) bark, and witch hazel ( Hammamelis virginiana ) bark to repair alpha-tocopherol (alpha-TOH) through reduction of the alpha-tocopheroxyl radical was investigated in a homogeneous hexane system and a phospholipid-like system based on SDS micelles. These natural polyphenols were compared with pure related phenolics (epicatechin, gallic acid, epigallocatechin gallate, quercetin, and rutin) and ascorbic acid, which is a substance with a well-recognized capacity for regenerating alpha-TOH. alpha-Tocopheroxyl radicals were monitored and quantified by electron spin resonance (ESR) spectroscopy in the absence and presence of phenolics. Polyphenols from grape and pine bark were essentially catechin monomers and proanthocyanidins differing in the content of galloyl residues; those from pine bark had a negligible degree of galloylation. Polyphenolic fractions from witch hazel bark were composed of approximately 80% hydrolyzable tannins rich in galloyl moieties, together with a smaller amount of catechin monomers and proanthocyanidins. In the homogeneous hexane system, polyphenols from grape and pine bark exhibited similar activities, reducing the alpha-tocopheroxyl radicals by over 27-40%, whereas phenols from witch hazel were more highly effective, reducing 80% of alpha-TOH. In contrast, pine bark polyphenols were found to be significantly less active than the grape fractions in SDS micelles, reducing 30 and 70% of alpha-tocopheroxyl radicals, respectively. Polyphenolic fractions from witch hazel were also able to reduce the highest amount of alpha-TOH in SDS-micelles. The reducing capacity on alpha-tocopheroxyl radical of polyphenolic fractions was found to be pH-dependent and more effective at higher pH in the range of pH studied (5.8-7.8). These results stress the potential role of polyphenols, in particular those rich in galloyl groups, to maintain intact endogenous alpha-TOH in biological membranes through reduction of alpha-tocopheroxyl radicals.